精英家教网 > 高中数学 > 题目详情
10.设$a={3^{\frac{1}{3}}},b={({\frac{1}{4}})^{3.2}},c={log_{0.7}}3$,则a,b,c的大小关系为(  )
A.c<a<bB.c<b<aC.b<a<cD.a<b<c

分析 利用指数函数、对数函数的单调性求解.

解答 解:∵$a={3^{\frac{1}{3}}},b={({\frac{1}{4}})^{3.2}},c={log_{0.7}}3$,
∴$a={3}^{\frac{1}{3}}>{3}^{0}=1$,
0<b=($\frac{1}{4}$)3.2<($\frac{1}{4}$)0=1,
c=log0.73<log0.71=0,
∴c<b<a.
故选:B.

点评 本题考查三个数的大小的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知数列{an}满足a1=$\frac{1}{2}$,an+1=3an+1,数列{an}的前n项和为Sn,则S2016=(  )
A.$\frac{{3}^{2015}-2016}{2}$B.$\frac{{3}^{2016}-2016}{2}$C.$\frac{{3}^{2015}-2017}{2}$D.$\frac{{3}^{2016}-2017}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某电视竞赛截面设置了先后三道程序,优、良、中,若选手在某道程序中获得“中”,则该选手在本道程序中不通过,且不能进入下面的程序,选手只有全部通过三道程序才算通过,某选手甲参加了该竞赛节目,已知甲在每道程序中通过的概率为$\frac{3}{4}$,每道程序中得优、良、中的概率分别为p1,$\frac{1}{2}$,p2
(1)求甲不能通过的概率;
(2)设ξ为在三道程序中获优的次数,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{{\begin{array}{l}{|lgx|,0<x≤10}\\{-x+11,x>10}\end{array}}$若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是(  )
A.(1,10)B.(5,6)C.(10,11)D.(20,22)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)求证:已知x,y都是正实数,求证:x3+y3≥x2y+xy2
(2)求证:已知x,y,z都是正数,求证:$\frac{x}{yz}+\frac{y}{zx}+\frac{z}{xy}≥\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$•.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知四棱锥P-ABCD中,底面ABCD为菱形,且∠DAB=60°,△PAB是边长为a的正三角形,且平面PAB⊥平面ABCD,已知点M是PD的中点.
(1)证明:PB∥平面AMC;
(2)求三棱锥P-AMC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.复数$z=\frac{3+7i}{i}$的实部与虚部分别为(  )
A.7,-3B.7,-3iC.-7,3D.-7,3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若sinα=$\frac{\sqrt{3}}{2}$,则cos2α=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=Msin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的部分图象如下图所示,其中A,B分别为函数f(x)图象的一个最高点和最低点,且A,B两点的横坐标分别为1,4,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,则函数f(x)的一个单调减区间为(  )
A.(-6,-3)B.(6,9)C.(7,10)D.(10,13)

查看答案和解析>>

同步练习册答案