【题目】设a<0,(3x2+a)(2x+b)≥0在(a,b)上恒成立,则b﹣a的最大值为( )
A.
B.
C.
D.
【答案】A
【解析】解:∵(3x2+a)(2x+b)≥0在(a,b)上恒成立,
∴3x2+a≥0,2x+b≥0或3x2+a≤0,2x+b≤0,
①若2x+b≥0在(a,b)上恒成立,则2a+b≥0,即b≥﹣2a>0,
此时当x=0时,3x2+a=a≥0不成立,
②若2x+b≤0在(a,b)上恒成立,则2b+b≤0,即b≤0,
若3x2+a≤0在(a,b)上恒成立,则3a2+a≤0,即﹣ ≤a≤0,
故b﹣a的最大值为 ,
故选:A
【考点精析】掌握二次函数的性质和基本不等式是解答本题的根本,需要知道当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减;基本不等式:,(当且仅当时取到等号);变形公式:.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆,如图所示,斜率为且不过原点的直线交椭圆于两点,线段的中点为,射线交椭圆于点,交直线于点.
(1)求的最小值;
(2)若,求证:直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了得到函数 的图象,只要将函数y=sin2x的图象( )
A.向右平移 个单位长度
B.向左平移 个单位长度
C.向右平移 个单位长度
D.向左平移 个单位长度
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我们称满足: ()的数列为“级梦数列”.
(1)若是“级梦数列”且.求: 和的值;
(2)若是“级梦数列”且满足, ,求的最小值;
(3)若是“0级梦数列”且,设数列的前项和为.证明: ().
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=3x+x,g(x)=x3+x,h(x)=log3x+x的零点依次为a,b,c,则( )
A.c<b<a
B.a<b<c
C.c<a<b
D.b<a<c
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为,半径为,矩形的一边在直径上,点、、、在圆周上,、在边上,且,设.
(1)记游泳池及其附属设施的占地面积为,求的表达式;
(2)怎样设计才能符合园林局的要求?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为,其中为常数;
(1)若,且是奇函数,求的值;
(2)若, ,函数的最小值是,求的最大值;
(3)若,在上存在个点 ,满足, ,
,使得,
求实数的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两位同学在5次考试中的数学成绩用茎叶图表示如图,中间一列的数字表示数学成绩的十位数字,两边的数字表示数学成绩的个位数字,若甲、乙两人的平均成绩分别是 , ,则下列说法正确的是( )
A. ,甲比乙成绩稳定
B. ,乙比甲成绩稳定
C. ,甲比乙成绩稳定
D. ,乙比甲成绩稳定
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com