精英家教网 > 高中数学 > 题目详情

【题目】如图,正方形的边长为,已知,将沿边折起,折起后点在平面上的射影为点,则翻折后的几何体中有如下描述:

所成角的正切值是

④平面平面

⑤直线与平面所成角为30°.

其中正确的有________.(填写你认为正确的序号)

【答案】①②④⑤

【解析】

可得所成角,计算出长度后即可判断①;由线面垂直的判定可得平面,再由线面垂直的性质即可判断②;由三棱锥体积公式即可判断③;由面面垂直的判定即可判断④;由线面角的求解方法即可判断⑤;即可得解.

由题意,平面

由于,∴所成角,

,∴,∴,故①正确;

连接,由平面平面

,∴平面,∴,故②正确;

,故③错误;

平面平面,∴

,∴平面

平面,∴平面平面,故④正确;

由②知平面,连接

即为直线与平面所成角,

中,

,则,故⑤正确.

故答案为:①②④⑤.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市公租房的房源位于甲、乙两个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,现该市有3位申请人在申请公租房:

1)用合适的符号写出样本空间;

2)求没有人申请甲片区房源的概率;

3)求每个片区的房源都有人申请的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为数列的前项和,,若关于正整数的不等式的解集中的整数解有两个,则正实数的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市预测2000年到2004年人口总数与年份的关系如下表所示

年份200x(年)

0

1

2

3

4

人口数y(十)万

5

7

8

11

19

(1)请根据上表提供的数据,计算,用最小二乘法求出关于的线性回归方程

(2) 据此估计2005年该城市人口总数。

(参考数值:0×5+1×7+2×8+3×11+4×19=132,

参考公式:用最小二乘法求线性回归方程系数公式)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.已知函数.

(1)求过点图象的切线方程;

(2)若函数存在两个极值点 ,求的取值范围;

(3)当时,均有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知数列中,,前项和

1)求数列的通项公式;

2)设数列的前项和为,是否存在实数,使得对一切正整数都成立?若存在,求出的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在五面体中,四边形为矩形, 为等边三角形,且平面平面 .

(1)证明:平面平面

(2)若求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若求函数的图像在点处的切线方程;

(2)若函数有两个极值点,且求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中, 平面.

(1)求证:平面平面

(2)若,且,求二面角的平面角的大小.

查看答案和解析>>

同步练习册答案