分析 分离变量可得所以m<$\frac{{x}^{2}+4}{x}$,则?x∈[1,2],使得m<$\frac{{x}^{2}+4}{x}$成立,只需m小于f(x)的最大值,然后构造函数,由导数求其单调性,可得取值范围
解答 解:不等式x2-mx+4>0可化为mx<x2+4,
故?x∈[1,2],使得m<$\frac{{x}^{2}+4}{x}$,
记函数f(x)=$\frac{{x}^{2}+4}{x}$,x∈[1,2],
只需m小于f(x)的最大值,
由f′(x)=1-$\frac{4}{{x}^{2}}$=0,可得x=2,而且当x∈[1,2]时,f′(x)<0,f(x)单调递减,
故最大值为f(1),又f(1)=5.m的取值范围是:(-∞,5).
故答案为:(-∞,5).
点评 本题为参数范围的求解,构造函数利用导数工具求取值范围是解决问题的工关键,本题要和恒成立区分,易错求成函数的最小值.
科目:高中数学 来源: 题型:选择题
A. | f(x)=x${\;}^{\frac{1}{3}}$ | B. | f(x)=sinx | C. | f(x)=cosx | D. | f(x)=log2(x2+1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{n+1}{2(n+2)}$ | B. | $\frac{3}{4}$-$\frac{n+1}{2(n+2)}$ | C. | $\frac{3}{4}$-$\frac{1}{2}$($\frac{1}{n+1}$+$\frac{1}{n+2}$) | D. | $\frac{3}{2}$-$\frac{1}{n+1}$+$\frac{1}{n+2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\sqrt{2}$ | C. | 2 | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $(0,\frac{1}{2})∪(2,+∞)$ | B. | $(\frac{1}{2},1)∪(2,+∞)$ | C. | (2,+∞) | D. | $(\frac{1}{2},1)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com