精英家教网 > 高中数学 > 题目详情
AB为双曲线上的两个动点,满足。(Ⅰ)求证:为定值; (Ⅱ)动点P在线段AB上,满足,求证:点P在定圆上.
(Ⅰ)   (Ⅱ)  P在以O为圆心、为半径的定圆上
(Ⅰ)设点A的坐标为B的坐标为,则A在双曲线上,则.   所以.   ……5分
,所以.
同理,
所以. …10分
(Ⅱ)由三角形面积公式,得,所以
,即.
.
于是,.   即P在以O为圆心、为半径的定圆上. ……15分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题



查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

给出下列曲线:①;②;③;④。其中与直线有交点的所有曲线是(      )
A.①③B.②④C.①②③D.②③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)设椭圆的左焦点为F,上顶点为A,直线AF的倾斜角为(1)求椭圆的离心率;(2)设过点A且与AF垂直的直线与椭圆右准线的交点为B,过A、B、F三点的圆M恰好与直线相切,求椭圆的方程及圆M的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆和圆,且圆C与x轴交于A1,A2两点(1)设椭圆C1的右焦点为F,点P的圆C上异于A1,A2的动点,过原点O作直线PF的垂线交椭圆的右准线交于点Q,试判断直线PQ与圆C的位置关系,并给出证明。  (2)设点在直线上,若存在点,使得(O为坐标原点),求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆中心在原点,长轴在坐标轴上,离心率为,短轴长为4,求椭圆标准方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1F2是双曲线的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是  (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点,顶点A1、A2在x轴上,离心率e=
21
3
的双曲线过点P(6,6).
(1)求双曲线方程.
(2)动直线l经过△A1PA2的重心G,与双曲线交于不同的两点M、N,问:是否存在直线l,使G平分线段MN,证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

双曲线C与椭圆有相同的焦点,直线y=C的一条渐近线. 过点P(0,4)的直线,交双曲线CA,B两点,交x轴于Q点(Q点与C的顶点不重合).当,且时,求Q点的坐标.

查看答案和解析>>

同步练习册答案