【题目】已知数列{an}的各项均为正数,记A(n)=a1+a2+…+an , B(n)=a2+a3+…+an+1 , C(n)=a3+a4+…+an+2 , n=1,2,….
(1)若a1=1,a2=5,且对任意n∈N* , 三个数A(n),B(n),C(n)组成等差数列,求数列{an}的通项公式.
(2)证明:数列{an}是公比为q的等比数列的充分必要条件是:对任意n∈N* , 三个数A(n),B(n),C(n)组成公比为q的等比数列.
【答案】
(1)
解:∵对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,
∴B(n)﹣A(n)=C(n)﹣B(n),
即an+1﹣a1=an+2﹣a2,亦即an+2﹣an+1=a2﹣a1=4.
故数列{an}是首项为1,公差为4的等差数列,于是an=1+(n﹣1)×4=4n﹣3
(2)
证明:(必要性):若数列{an}是公比为q的等比数列,对任意n∈N*,有an+1=anq.由an>0知,A(n),B(n),C(n)均大于0,于是
= = =q,
= = =q,
即 = =q,
∴三个数A(n),B(n),C(n)组成公比为q的等比数列;
(充分性):若对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列,则
B(n)=qA(n),C(n)=qB(n),
于是C(n)﹣B(n)=q[B(n)﹣A(n)],即an+2﹣a2=q(an+1﹣a1),亦即an+2﹣qan+1=a2﹣qa1.
由n=1时,B(1)=qA(1),即a2=qa1,从而an+2﹣qan+1=0.
∵an>0,
∴ = =q.故数列{an}是首项为a1,公比为q的等比数列.
综上所述,数列{an}是公比为q的等比数列的充分必要条件是:对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列
【解析】(1)由于对任意n∈N* , 三个数A(n),B(n),C(n)组成等差数列,可得到B(n)﹣A(n)=C(n)﹣B(n),即an+1﹣a1=an+2﹣a2 , 整理即可得数列{an}是首项为1,公差为4的等差数列,从而可得an . (2)必要性:由数列{an}是公比为q的等比数列,可证得即 = =q,即必要性成立;充分性:若对任意n∈N* , 三个数A(n),B(n),C(n)组成公比为q的等比数列,可得an+2﹣qan+1=a2﹣qa1 . 由n=1时,B(1)=qA(1),即a2=qa1 , 从而an+2﹣qan+1=0,即充分性成立,于是结论得证.
【考点精析】本题主要考查了等比关系的确定和等差数列的性质的相关知识点,需要掌握等比数列可以通过定义法、中项法、通项公式法、前n项和法进行判断;在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】(本题满分12分)某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上件产品作为样本称出它们的重量(单位:克),重量的分组区间为,, ,,由此得到样本的频率分布直方图,如图所示.
(1)根据频率分布直方图,求重量超过克的产品数量;
(2)在上述抽取的件产品中任取件,设为重量超过克的产品数量,求的分布列;
(3)从该流水线上任取件产品,求恰有件产品的重量超过克的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代著名的数学著作有10部算书,被称为“算经十书”.某校数学兴趣小组甲、乙、丙、丁四名同学对古代著名的数学著作产生浓厚的兴趣.一天,他们根据最近对这十部书的阅读本数情况说了这些话,甲:“乙比丁少”;乙:“甲比丙多”;丙:“我比丁多”; 丁:“丙比乙多”,他们说的这些话中,只有一个人说的是真实的,而这个人正是他们四个人中读书本数最少的一个(他们四个人对这十部书阅读本数各不相同).甲、乙、丙、丁按各人读书本数由少到多的排列是( )
A. 乙甲丙丁 B. 甲丁乙丙 C. 丙甲丁乙 D. 甲丙乙丁
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次性购物量 | 1至4件 | 5 至8件 | 9至12件 | 13至16件 | 17件及以上 |
顾客数(人) | x | 30 | 25 | y | 10 |
结算时间(分钟/人) | 1 | 1.5 | 2 | 2.5 | 3 |
已知这100位顾客中的一次购物量超过8件的顾客占55%.
(1)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;
(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某共享单车企业在城市就“一天中一辆单车的平均成本与租用单车数量之间的关系”进行了调查,并将相关数据统计如下表:
根据以上数据,研究人员设计了两种不同的回归分析模型,得到两个拟合函数:
模型甲:,模型乙:.
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1元)(备注:,称为相应于点的残差);
②分别计算模型甲与模型乙的残差平方和及,并通过比较的大小,判断哪个模型拟合效果更好.
(2)这家企业在4城市投放共享单车后,受到广大市民的热烈欢迎并供不应求,于是该企业决定增加单车投放量.根据市场调查,市场投放量达到1万辆时,平均每辆单车一天能收入7.2元;市场投放量达到1.2万辆时,平均每辆单车一天能收入6.8元.若按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,问该企业投放量选择1万辆还是1.2万辆能获得更多利润?请说明理由.(利润收入成本)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆有以下性质:
①过圆上一点的圆的切线方程是.
②若不在坐标轴上的点为圆外一点,过作圆的两条切线,切点分别为,则垂直,即.
(1)类比上述有关结论,猜想过椭圆上一点的切线方程 (不要求证明);
(2)若过椭圆外一点(不在坐标轴上)作两直线,与椭圆相切于两点,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆 的左右顶点分别为A,B,点P在椭圆上且异于A,B两点,O为坐标原点.
(1)若直线AP与BP的斜率之积为 ,求椭圆的离心率;
(2)若|AP|=|OA|,证明直线OP的斜率k满足|k|> .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com