【题目】已知函数.
(1)解关于的不等式;
(2)若当时,恒成立,求实数的取值范围.
【答案】(1) 当时,不等式解集为;当时,不等式解集为;当时,不等式解集为;当时,不等式解集为;
当时,不等式解集为;(2) 的取值范围是.
【解析】分析:(1)对m分类讨论,利用一元二次不等式的解法解不等式.(2)对m 分类讨论,求的最大值,再令的最大值小于等于4m,即得m的取值范围.
详解:(1)由题意,得
即
①当时,得,解得;
②当时,得,
∵,
∴解得或;
③当时,得,
∵.
当时,,解得;
当时,,,解集为空集;
当时,,解得;
综上所述:当时,不等式解集为;
当时,不等式解集为;
当时,不等式解集为;
当时,不等式解集为;
当时,不等式解集为.
(2)的图像是一条开口向上的抛物线,关于对称.
由题意:.
①若,则在上是增函数,从而
在上的最小值是,最大值是.
由得于是有
解得,∴.
又∵,∴.
②若,此时.
则当时,不恒成立.
综上:使恒成立的的取值范围是.
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.
(2)点P在直线l:2x-4y+3=0上,过点P作圆C的切线,切点记为M,求使|PM|最小的点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆过点,且与圆相内切.
(I)求动圆的圆心的轨迹方程;
(II)设直线(其中与(1)中所求轨迹交于不同两点,D,与双曲线交于不同两点,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,圆的圆心在轴上,且过点,.
(1)求圆的方程;
(2)直线:与轴交于点,点为直线上位于第一象限内的一点,以为直径的圆与圆相交于点,.若直线的斜率为-2,求点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种“笼具”由内,外两层组成,无下底面,内层和外层分别是一个圆锥和圆柱,其中圆柱与圆锥的底面周长相等,圆柱有上底面,制作时需要将圆锥的顶端剪去,剪去部分和接头忽略不计,已知圆柱的底面周长为,高为,圆锥的母线长为.
(1)求这种“笼具”的体积;
(2)现要使用一种纱网材料制作50个“笼具”,该材料的造价为每平方米8元,共需多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设为双曲线: 的右焦点,过坐标原点的直线依次与双曲线的左、右支交于点,若, ,则该双曲线的离心率为( )
A. B. C. D.
【答案】B
【解析】,设双曲线的左焦点为,连接,由对称性可知, 为矩形,且,故,故选B.
【 方法点睛】本题主要考查双曲线的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.
【题型】单选题
【结束】
12
【题目】点到点, 及到直线的距离都相,如果这样的点恰好只有一个,那么实数的值是( )
A. B. C. 或 D. 或
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com