精英家教网 > 高中数学 > 题目详情
(2013•江门一模)(几何证明选讲选做题)如图,圆O内的两条弦AB、CD相交于P,PA=PB=4,PD=4PC.若O到AB的距离为4,则O到CD的距离为
7
7
分析:取AD中点M,连接OD、OM、OP、OA,可得OM⊥CD且OP⊥AB.Rt△OPA中运用勾股定理算出OA=4
2
,根据相交弦定理和题中数据算出弦CD=10,从而在Rt△OMD中用勾股定理算出OM=
7
,即得圆心O到CD的距离.
解答:解:取AD中点M,连接OD、OM、OP、OA
根据圆的性质,OM⊥CD,OM即为O到CD的距离
∵PA=PB=4,即P为AB中点,
∴OP⊥AB,可得OP=4.
Rt△OPA中,OA=
OP2+AP2
=4
2

∵PA=PB=4,PD=4PC,
∴由PA•PB=PC•PD,即42=4PC2,可得PC=2
因此,PD=4PC=8,得CD=10
∴Rt△OMD中,DM=
1
2
CD=5,OD=OA=4
2

可得OM=
OD2-DM2
=
7

故答案为:
7
点评:本题给出圆的相交弦,在已知交点分弦的比值情况下求弦到圆心的距离,着重考查了相交弦定理、垂径定理等圆的常用性质的知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•江门一模)已知函数f(x)=
1-x
定义域为M,g(x)=lnx定义域为N,则M∩N=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江门一模)在△ABC中,若∠A=
5
12
π
∠B=
1
4
π
AB=6
2
,则AC=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江门一模)在平面直角坐标系Oxy中,直线y=a(a>0)与抛物线y=x2所围成的封闭图形的面积为
8
2
3
,则a=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江门一模)广东某企业转型升级生产某款新产品,每天生产的固定成本为10000元,每生产1吨,成本增加240元.已知该产品日产量不超过600吨,销售量f(x)(单位:吨)与产量x(单位:吨)之间的关系为f(x)=
x-
1
1600
x20≤x≤480
7
10
x480<x≤600
,每吨产品售价为400元.
(1)写出该企业日销售利润g(x)(单位:元)与产量x之间的关系式;
(2)求该企业日销售利润的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江门一模)(1)证明:对?x>0,lnx≤x-1;
(2)数列{an},若存在常数M>0,?n∈N*,都有an<M,则称数列{an}有上界.已知bn=1+
1
2
+…+
1
n
,试判断数列{bn}是否有上界.

查看答案和解析>>

同步练习册答案