精英家教网 > 高中数学 > 题目详情

已知函数,求的单调区间

 

【答案】

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
1
2
x2+mx+
7
2
(m<0),直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象的切点横坐标为1.
(1)求直线l的方程及m的值;
(2)若h(x)=f(x)-g'(x)(其中g'(x)是g(x)的导函数),求h(x)的单调区是及最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•雁江区一模)已知函数f(x)=ax2+ln(x+1).
(Ⅰ)当a=-
1
4
时,求函数f(x)的单调区间;
(Ⅱ)当x∈[0,+∞)时,函数y=f(x)图象上的点都在
x≥0
y-x≤0
所表示的平面区域内,求实数a的取值范围.
(Ⅲ)求证:(1+
2
2×3
)(1+
4
3×5
)(1+
8
5×9
)•…•[1+
2n
(2n-1+1)(2n+1)
]<e
(其中n∈N*,e是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•昌平区二模)已知函数f(x)=sin(π-2x)+2
3
cos2x,x∈R.
(Ⅰ)求f(
π
6
);
(Ⅱ)求f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数(其中e为自然对数)

求F(x)=h(x)的极值。

  (常数a>0),当x>1时,求函数G(x)的单调区

间,并在极值存在处求极值。

查看答案和解析>>

科目:高中数学 来源: 题型:

20.已知函数f(x)=ax4lnx+bx4-c(x>0)在x=1处取得极值-3-c,其中a,b,c为常数.

(Ⅰ)试确a,b的值;

(Ⅱ)讨论函数f(x)的单调区向;

(Ⅲ)若对任意x>0,不等式f(x)≥-2c2恒成立,求x的取值范围.

查看答案和解析>>

同步练习册答案