精英家教网 > 高中数学 > 题目详情
已知sin(α+
π
6
)=
1
3
,则cos(α+
3
)=(  )
A、
2
2
3
B、
1
3
C、-
1
3
D、-
2
2
3
考点:运用诱导公式化简求值
专题:三角函数的求值
分析:利用三角函数间的诱导公式即可求得答案.
解答: 解:∵sin(α+
π
6
)=
1
3

∴cos(α+
3
)=cos[(α+
π
6
)+
π
2
]=-sin(α+
π
6
)=-
1
3

故选:C.
点评:本题考查运用诱导公式化简求值,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2cos2
1
2
(ωx+φ)-2
3
sin
1
2
(ωx+φ)cos
1
2
(ωx+φ)(ω>0.0<φ<
π
2
)其图象的两个相邻对称中心的距离为
π
2
,且过点(-
π
6
,2).
(Ⅰ)函数f(x)的达式;
(Ⅱ)若f(
α
2
-
π
6
)=
1
2
,α是第三象限角,求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两集合M={x∈R|0≤x≤8},N={y∈R|0≤y≤5}.下列的对应关系中,是M到N的映射的是(  )
A、f:x→y=2
x
B、f:x→y=
2
3
x
C、f:x→y=2x-1
D、f:x→y=
3x

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥S-ABC中,SA⊥底面ABC,BC⊥AC,且AC=1,BC=
2
,又D是棱SC上一点,AD+DB的最小值为
5
,则三棱锥S-ABC的外接球的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(
1
3
)x
.当x∈[-1,1]时,求函数y=f2(x)-2af(x)+3的最小值g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

“m=-2”是“直线mx+2y+2=0与直线2x+my+2=0平行”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)log2.56.25+lg0.01+ln
e
+2log23

(2)已知a-a-1=1,求
a2+a-2-3
a6+a-6
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,集合A={y|y=lg(x2+10),x∈R),集合B={x||x-2|<1},则(∁UB)∩A=(  )
A、{x|0≤x<1或x>3}
B、{x|x=1或x≥3}
C、{x|x>3}
D、{x|1≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1的底面三角形ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点.
(1)求
BN
的长;
(2)求cos<
BA1
CB1
的值.

查看答案和解析>>

同步练习册答案