精英家教网 > 高中数学 > 题目详情

【题目】H大桥”是某市的交通要道,提高过桥车辆的通行能力可改善整个城市的交通状况.研究表明:在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数,当桥上的车流密度达到200/千米时,造成堵塞,此时车流速度为;当车流密度不超过20/千米时,车流速度为60千米/小时;当时,车流速度是车流密度的一次函数.

1)当时,求函数的表达式.

2)设车流量,求当车流密度为多少时,车流量最大?

【答案】1;(2)当时,车流量最大为

【解析】

1)设出一次函数,代入数据计算得到答案.

2)得到函数表达式,分别计算两段函数的最值得到答案.

1)当时,设,根据,代入解得

,故

2

时,

综上所述:当时,车流量最大为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在一次体能测试中,某研究院对该地区甲、乙两学校做抽样调查,所得学生的测试成绩如下表所示:

1将甲、乙两学校学生的成绩整理在所给的茎叶图中,并分别计算其平均数;

2若在乙学校被抽取的10名学生中任选3人检测肺活量,求被抽到的3人中,至少2人成绩超过80分的概率;

3以甲学校的体能测试情况估计该地区所有学生的体能情况,则若从该地区随机抽取4名学生,记测试成绩在80分以上(含80分)的人数为的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下判断正确的是 ( )

A. 函数上的可导函数,则为函数极值点的充要条件

B. 若命题为假命题,则命题与命题均为假命题

C. ,则的逆命题为真命题

D. 中,“”是“”的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】目前,某市出租车的计价标准是:路程以内(含按起步价8元收取,超过后的路程按1.9元收取,但超过后的路程需加收的返空费(即单价为

(1)若将乘客搭乘一次出租车的费用(单位:元)表示为行程(单位)的分段函数;

(2)某乘客行程为他准备先乘一辆出租车行驶然后再换乘另一辆出租车完成余下路程,请问:他这样做是否比只乘一辆出租车完成全程更省钱?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的各项均为正数,其公差为2,a2a4=4a3+1.

(1)求{an}的通项公式;

(2)求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域为的函数满足:对于任意的实数都有 成立,且当时,

(Ⅰ)判断函数的奇偶性,并证明你的结论;

(Ⅱ)证明上为减函数;

(Ⅲ)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从原点向圆 作两条切线,切点分别为,,记切线的斜率分别为

(Ⅰ)若圆心,求两切线的方程;

(Ⅱ)若,求圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)是定义在R上的奇函数,且当x0,f(x)=-x2+ax.

(1)a=-2,求函数f(x)的解析式;

(2)若函数f(x)R上的单调减函数,

a的取值范围;

若对任意实数m,f(m-1)+f(m2+t)<0恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2AD=BAD=90°

求证:ADBC

求异面直线BCMD所成角的余弦值;

(Ⅲ)求直线CD与平面ABD所成角的正弦值.

查看答案和解析>>

同步练习册答案