精英家教网 > 高中数学 > 题目详情
13.设a是实数,对函数f(x)=x2-2x+a2+3a-3和抛物线C:y2=4x,有如下两个命题:p:函数f(x)的最小值小于0;q:抛物线y2=4x上的动点$M(\frac{a^2}{4},a)$到焦点F的距离大于2.已知“?p”和“p∧q”都为假命题,求实数a的取值范围.

分析?p”和“p∧q”都为假命题,可得p为真命题,q为假命题,分别求出相应a的范围,即可求实数a的取值范围.

解答 解:∵?p和p∧q都是假命题,∴p为真命题,q为假命题.…(2分)
∵f(x)=x2-2x+a2+3a-3=(x-1)2+a2+3a-4,∴$f{(x)_{min}}={a^2}+3a-4<0$,
所以,-4<a<1; …(6分)
又∵抛物线y2=4x的准线为x=-1,q为假命题,∴$|{MF}|=\frac{a^2}{4}+1≤2$,∴-2≤a≤2.…(10分)
故所求a的取值范围为[-2,1).…(12分)

点评 本题考查命题的真假运用,考查二次函数的性质、抛物线的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若0<x1<x2<1,则(  )
A.${x_2}{e^{x_1}}>{x_1}{e^{x_2}}$B.${x_2}{e^{x_1}}<{x_1}{e^{x_2}}$
C.lnx2-lnx1>2x2-2x1D.lnx2-lnx1<2x2-2x1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知直线x+2ay-1=0与直线x-4y=0平行,则a的值为(  )
A.-2B.2C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知等差数列{an} 中,a5=3,a6=-2
(1)求数列{an}的首项a1和公差d;
(2)求数列{an}的通项公式an 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=a|log2x|+1(a≠0),定义函数F(x)=$\left\{\begin{array}{l}{f(x),x>0}\\{f(-x),x<0}\end{array}\right.$,给出下列命题:
①F(x)=|f(x);   
②函数F(x)是偶函数;
③当a<0时,若0<m<n<1,则有F(m)-F(n)<0成立;
④当a>0时,函数y=F(x)-2有4个零点.
其中正确命题的序号为②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若x,y∈R,则“|x|>|y|”是“x2>y2”的(  )
A.充要条件B.充分而不必要条件
C.必要而不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在三棱锥P-ABC中,底面ABC是边长为6的正三角形,PA⊥底面ABC,且PB与底面ABC所成的角为$\frac{π}{6}$.
(1)求三棱锥P-ABC的体积;
(2)若M是BC的中点,求异面直线PM与AB所成角的大小(结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知常数m≠0,n≥2且n∈N,二项式(1+mx)n的展开式中,只有第6项的二项式系数最大,第三项系数是第二项系数的9倍.
(1)求m、n的值;
(2)若记(1+mx)n=a0+a1(x+8)+a2(x+8)2+…+an(x+8)n,求a0-a1+a2-a3+…+(-1)nan除以6的余数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某同学用“五点法”画函数$f(x)=2sin(2x-\frac{π}{3})+1$在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上的图象时,列表并填入了部分数据,如表:
2x-$\frac{π}{3}$-$\frac{4}{3}$π-$\frac{π}{2}$0$\frac{π}{2}$$\frac{2}{3}$π
x-$\frac{π}{2}$-$\frac{π}{3}$-$\frac{π}{12}$$\frac{π}{6}$$\frac{5π}{12}$$\frac{π}{2}$
f(x)
(1)请将上表数据补充完整,并在给出的直角坐标系中,画出f(x)在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上的图象;
(2)求f(x)的最小值及取最小值时x的集合;
(3)求f(x)在$x∈[0,\frac{π}{2}]$时的值域.

查看答案和解析>>

同步练习册答案