精英家教网 > 高中数学 > 题目详情

已知函数
(1)求函数在点(0,f(0))处的切线方程;
(2)求函数单调递增区间;
(3)若∈[1,1],使得(e是自然对数的底数),求实数的取值范围.

(1)函数在点处的切线方程为;(2)函数单调递增区间
(3)实数a的取值范围是.

解析试题分析:⑴ 先根据函数解析式求出,把代入求出斜率,进而求得切线方程;⑵ 因为当时,总有上是增函数, 又,所以函数的单调增区间为;⑶ 要使成立,只需成立即可;再分两种情况讨论即可.
试题解析:⑴ 因为函数
所以,                     2分
又因为,所以函数在点处的切线方程为.          4分
⑵ 由⑴,
因为当时,总有上是增函数,
,所以不等式的解集为
故函数的单调增区间为                        8分
⑶ 因为存在,使得成立,
而当时,
所以只要即可                       9分
又因为的变化情况如下表所示:










减函数
极小值
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=.
(1)求函数f(x)的最小值;
(2)已知m∈R,命题p:关于x的不等式f(x)≥m2+2m-2对任意m∈R恒成立;q:函数y=(m2-1)x是增函数.若“pq”为真,“pq”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商场对A品牌的商品进行了市场调查,预计2012年从1月起前x个月顾客对A品牌的商品的需求总量P(x)件与月份x的近似关系是:
P(x)=x(x+1)(41-2x)(x≤12且x∈N*)
(1)写出第x月的需求量f(x)的表达式;
(2)若第x月的销售量g(x)=
(单位:件),每件利润q(x)元与月份x的近似关系为:q(x)=,问:该商场销售A品牌商品,预计第几月的月利润达到最大值?月利润最大值是多少?(e6≈403)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的单调区间;
(2)若,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

计算
(1)
(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数),函数定义为:对每一个给定的实数
(1)求证:当满足条件时,对于,
(2)设是两个实数,满足,且,若,求函数在区间上的单调递增区间的长度之和.(闭区间的长度定义为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某家具厂生产一种儿童用组合床柜的固定成本为20000元,每生产一组该组合床柜需要增加投入100元,已知总收益满足函数:,其中是组合床柜的月产量.
(1)将利润元表示为月产量组的函数;
(2)当月产量为何值时,该厂所获得利润最大?最大利润是多少?(总收益=总成本+利润).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

噪声污染已经成为影响人们身体健康和生活质量的严重问题.实践证明,声音强度(分贝)由公式(为非零常数)给出,其中为声音能量.
(1)当声音强度满足时,求对应的声音能量满足的等量关系式;
(2)当人们低声说话,声音能量为时,声音强度为30分贝;当人们正常说话,声音能量为时,声音强度为40分贝.当声音能量大于60分贝时属于噪音,一般人在100分贝~120分贝的空间内,一分钟就会暂时性失聪.问声音能量在什么范围时,人会暂时性失聪.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,一种医用输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下球状液体,其中球状液体的半径毫米,滴管内液体忽略不计.

(1)如果瓶内的药液恰好分钟滴完,问每分钟应滴下多少滴?
(2)在条件(1)下,设输液开始后(单位:分钟),瓶内液面与进气管的距离为(单位:厘米),已知当时,.试将表示为的函数.(注:

查看答案和解析>>

同步练习册答案