精英家教网 > 高中数学 > 题目详情

【题目】△ABC的内角A,B,C的对边分别为a,b,c,且cosAcosC﹣cos(A+C)=sin2B. (Ⅰ)证明:a,b,c成等比数列;
(Ⅱ)若角B的平分线BD交AC于点D,且b=6,SBAD=2SBCD , 求BD.

【答案】解:(Ⅰ)证明:∵cosAcosC﹣cos(A+C)=sin2B. ∴cosAcosC﹣(cosAcosC﹣sinAsinC)=sin2B,可得:sinAsinC=sin2B,
∴由正弦定理可得:b2=ac,
∴a,b,c成等比数列;
(Ⅱ)如图,∵角B的平分线BD交AC于点D,且b=6,可得:AD+CD=6,
∵SBAD=2SBCD , 可得:AD=2CD,
∴解得:AD=4,CD=2,
∵由(Ⅰ)可得:b2=ac=36,
= ,可得:AB=2BC,即c=2a,
∴解得:a=3 ,c=6
∴cosA= =
∴BD= =2

【解析】(Ⅰ)利用两角和的余弦函数公式化简已知等式可得sinAsinC=sin2B,由正弦定理可得:b2=ac,即可得证.(Ⅱ)由已知可得:AD+CD=6,由三角形面积公式可得AD=2CD,从而可求AD=4,CD=2,由(Ⅰ)可得:b2=36,利用角平分线的性质可得AB=2BC,即c=2a,从而可求a,c的值,进而利用余弦定理可求cosA,即可由余弦定理求得BD的值.
【考点精析】掌握正弦定理的定义和余弦定理的定义是解答本题的根本,需要知道正弦定理:;余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)求函数的单调区间;

(2)对任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数对任意都有,且函数的图象关于原点对称,若满足不等式,则当时, 的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中是自然对数的底数)

(1)若,当时,试比较2的大小;

(2)若函数有两个极值点,求的取值范围,并证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为零的等差数列{an}中,a1=1,且a1 , a3 , a9成等比数列.
(1)求数列{an}的通项公式;
(2)设bn= +n,求数列Sn的前Sn项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下四个问题:①x,输出它的绝对值.②求面积为6的正方形的周长.③求三个数a,b,c中最大数.④求函数的函数值.其中不需要用条件语句来描述其算法的有 个.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,讨论的单调性;

(2)当时,若方程有两个相异实根,且,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高二年级有500名学生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:

分组

频数

频率

[85,95)

0.025

[95,105)

0.050

[105,115)

0.200

[115,125)

12

0.300

[125,135)

0.275

[135,145)

4

[145,155]

0.050

合计


(1)根据图表,①②③处的数值分别为
(2)在所给的坐标系中画出[85,155]的频率分布直方图;

(3)根据题中信息估计总体落在[125,155]中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为备战某次运动会,某市体育局组建了一个由4个男运动员和2个女运动员组成的6人代表队并进行备战训练.
(1)经过备战训练,从6人中随机选出2人进行成果检验,求选出的2人中至少有1个女运动员的概率;
(2)检验结束后,甲、乙两名运动员的成绩如下:
甲:70,68,74,71,72
乙:70,69,70,74,72
根据两组数据完成图示的茎叶图,并通过计算说明哪位运动员的成绩更稳定.

查看答案和解析>>

同步练习册答案