精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分14分)已知椭圆的左焦点为,右顶点为的坐标为的面积为.

(I)求椭圆的离心率;

(II)在线段延长线段与椭圆交于点,点上,,且直线与直线间的距离为四边形的面积为.

(i)求直线的斜率;

(ii)求椭圆的方程.

【答案】(1) (2)(

【解析】)设椭圆的离心率为e.由已知,可得.又由可得.又因为解得.

所以,椭圆的离心率为

)()依题意,设直线FP的方程为则直线FP的斜率为.

由()知,可得直线AE的方程为与直线FP的方程联立可解得即点Q的坐标为.

由已知|FQ|=整理所以即直线FP的斜率为.

(ii)由,可得,故椭圆方程可以表示为.

由(i)得直线FP的方程为,与椭圆方程联立消去,整理得,解得(舍去),或.因此可得点,进而可得,所以.由已知,线段的长即为这两条平行直线间的距离,故直线都垂直于直线.

因为,所以,所以的面积为,同理的面积等于,由四边形的面积为,得,整理得,又由,得.

所以,椭圆的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的表面积是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子装有六张卡片,上面分别写着如下六个函数:

.

)从中任意拿取张卡片,中至少有一张卡片上写着的函数为奇函数,在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;

)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:

(1)试估算该校高三年级学生获得成绩为的人数;

(2)若等级分别对应100分、90分、80分、70分、60分,学校要求平均分达90分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?

(3)为了解心理健康状态稳定学生的特点,现从两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取3个学生样本分析,求这3个样本为级的个数的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,a、b、c分别为∠A,∠B,∠C的对边,如果a、b、c成等差数列,∠B=30°,△ABC的面积为 ,那么b等于(
A.
B.1+
C.
D.2+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=x+ (x≠﹣1)的值域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}中,a1=﹣3,11a5=5a8 , 前n项和为Sn
(1)求an
(2)当n为何值时,Sn最小?并求Sn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一盒中装有各色球12只,其中5个红球,4个黑球,2个白球,1个绿球;从中随机取出1球.求:
(1)取出的1球是红球或黑球的概率;
(2)取出的1球是红球或黑球或白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四面体ABCD中,AB和CD为对棱.设AB=a,CD=b,且异面直线AB与CD间的距离为d,夹角为θ.
(Ⅰ)若θ= ,且棱AB垂直于平面BCD,求四面体ABCD的体积;
(Ⅱ)当θ= 时,证明:四面体ABCD的体积为一定值;
(Ⅲ)求四面体ABCD的体积.

查看答案和解析>>

同步练习册答案