精英家教网 > 高中数学 > 题目详情

在如图所示的几何体中,四边形是菱形,是矩形,平面⊥平面的中点.

(Ⅰ)求证://平面

(Ⅱ)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

 

【答案】

(1)详见解析;(2)存在,

【解析】

试题分析:(1)要 证明//平面,只需在平面内找一条直线与平行,连接于点,则的中位线,所以,则//平面;(2)(方法一:)先假设满足条件的点存在,由已知的垂直关系,找到二面角的平面角,然后在中计算,并判断是否小于1;(方法二:)找三条两两垂直相交的直线,建立空间直角坐标系,设点的坐标,并分别表示相关点的坐标,分别求两个 半平面的法向量,再利用空间向量的夹角公式列式,确定点的位置,并判断其是否在线段上.

试题解析:(1)连接,设和交于点,连接,因为==,所以四边形是平行四边形,中点,又因为中点,所以,又平面平面,所以//平面

(2)假设在线段上存在点,使二面角的大小为.

(解法一)延长交于点,过点,连接,因为四边形是矩形,平面⊥平面,所以⊥平面,又,所以,则,则就是二面角的平面角,则=中,,则,所以=,又在中,,故在线段上存在点,使二面角的大小为,此时的长为.

(解法二)由于四边形是菱形,的中点,,所以是等边三角形,则,有因为四边形是矩形,平面⊥平面,所以,如图建立空间直角坐标系,设平面的法向量为,则,得,令,所以,又平面的法向量,解得

故在线段上存在点,使二面角的大小为,此时的长为.

考点:1、线面平行的判定;2、面面垂直的性质定理;3、二面角的求法.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在如图所示的几何体中,四边形ABCD、ADEF、ABGF均为全等的直角梯形,且BC∥AD,AB=AD=2BC.
(Ⅰ)求证:CE∥平面ABGF;
(Ⅱ)求二面角G-CE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,平行四边形ABCD的顶点都在以AC为直径的圆O上,AD=CD=DP=a,AP=CP=
2
a,DP∥AM,且AM=
1
2
DP,E,F分别为BP,CP的中点.
(I)证明:EF∥平面ADP;
(II)求三棱锥M-ABP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•朝阳区一模)在如图所示的几何体中,四边形ABCD为平行四边形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EF=1,BC=
13
,且M是BD的中点.
(Ⅰ)求证:EM∥平面ADF;
(Ⅱ)在EB上是否存在一点P,使得∠CPD最大?若存在,请求出∠CPD的正切值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,AB=2BC,∠ABC=60°,AC⊥FB.
(Ⅰ)求证:AC⊥平面FBC;
(Ⅱ)线段ED上是否存在点Q,使平面EAC⊥平面QBC?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在如图所示的几何体中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,AC=BC=BD=2AE=2,M是AB的中点. 
(1)求证:CM⊥平面ABDE;
(2)求几何体的体积.

查看答案和解析>>

同步练习册答案