精英家教网 > 高中数学 > 题目详情

【题目】已知集合A{x| ≥0},B={x|x2﹣2x﹣3<0},C={x|x2﹣(2a+1)x+a(a+1)<0}.
(1)求集合A,B及A∪B;
(2)若C(A∩B),求实数a的取值范围.

【答案】
(1)解:集合A{x| ≥0},B={x|x2﹣2x﹣3<0},

C={x|x2﹣(2a+1)x+a(a+1)<0}.

,即(2﹣x)(3+x)≥0,

解得:﹣3<x≤2,

∴集合A={x|﹣3<x≤2}:

又∵x2﹣2x﹣3<0,

解得:﹣1<x<3,

∴集合B={x|﹣1<x<3}:

那么:A∪B={x|﹣3<x<3}.


(2)解:由(1)可得集合A={x|﹣3<x≤2}:集合B={x|﹣1<x<3}:

那么:A∩B={x|﹣1<x≤2}.

∵x2﹣(2a+1)x+a(a+1)<0

∴(x﹣a)(x﹣a﹣1)<0.

∴集合C={x|a<x<a+1}

∵C(A∩B),

∴需满足

解得:﹣1≤a≤1.

所以实数a的取值范围是[﹣1,1]


【解析】(1)根据题意化简求出集合A,集合B.根据集合的基本运算即可求A∪B,(2)先求出A∩B,在根据C(A∩B),建立条件关系即可求实数a的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列各组中的两个函数是同一函数的为( )
(1)f(x)=1,g(x)=x0
(2)f(x)= ,g(x)=
(3)f(x)=lnxx , g(x)=elnx
(4)f(x)= ,g(x)=
A.(1)
B.(2)
C.(3)
D.(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数函数f(x)=(
(1)求函数f(x)的值域
(2)求函数的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】点P是椭圆 上的一点,F1和F2是焦点,且 ,则△F1PF2的周长为 , △F1PF2的面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】几年来,网上购物风靡,快递业迅猛发展,某市的快递业务主要由两家快递公司承接,即圆通公司与申通公司:“快递员”的工资是“底薪+送件提成”:这两家公司对“快递员”的日工资方案为:圆通公司规定快递员每天底薪为70元,每送件一次提成1元;申通公司规定快递员每天底薪为120元,每日前83件没有提成,超过83件部分每件提成10元,假设同一公司的快递员每天送件数相同,现从这两家公司各随机抽取一名快递员并记录其100天的送件数,得到如下条形图:

(1)求申通公司的快递员一日工资(单位:元)与送件数的函数关系;

(2)若将频率视为概率,回答下列问题:

①记圆通公司的“快递员”日工资为(单位:元),求的分布列和数学期望;

②小王想到这两家公司中的一家应聘“快递员”的工作,如果仅从日收入的角度考虑,请你利用所学过的统计学知识为他作出选择,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=x2+bx+c,且f(﹣3)=f(1),f(0)=0.
(1)求函数f(x)的解析式;
(2)若函数g(x)=f(x)﹣(4+2a)x+2,x∈[1,2],求函数g(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中,E,F分别为AB,BC中点,则异面直线EF与AB1所成角的余弦值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: ,不经过原点O的直线l:y=kx+m(k>0)与椭圆E相交于不同的两点A、B,直线OA,AB,OB的斜率依次构成等比数列.
(Ⅰ)求a,b,k的关系式;
(Ⅱ)若离心率 ,当m为何值时,椭圆的焦距取得最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数).以原点为极点, 轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.直线交曲线两点.

(1)写出直线的极坐标方程和曲线的直角坐标方程;

(2)设点的直角坐标为,求点两点的距离之积.

查看答案和解析>>

同步练习册答案