精英家教网 > 高中数学 > 题目详情
已知函数f(x)=a-
2
2x+1
是奇函数(a∈R).
(Ⅰ)求实数a的值;
(Ⅱ)试判断函数f(x)在(-∞,+∞)上的单调性,并证明你的结论;
(Ⅲ)若对任意的t∈R,不等式f(t2-(m-2)t)+f(t2-m-1)<0恒成立,求实数m的取值范围.
(Ⅰ)由题意可得:f(x)=
a2x+a-2
2x+1

∵f(x)是奇函数∴f(-x)=-f(x)
a2-x+a-2
2-x+1
=-
a2x+a-2
2x+1
a+(a-2)2x
2x+1
=-
a2x+a-2
2x+1

∴a-2=a,即a=1(4分)
f(x)=1-
2
2x+1


(Ⅱ)设x1,x2为区间(-∞,+∞)内的任意两个值,且x1<x2
0<2x12x22x1-2x2<0
∵f(x1)-f(x2)=
2
2x2+1
-
2
2x1+1
=
2(2x1-2x2)
(2x1+1)(2x2+1)
<0
即f(x1)<f(x2)∴f(x)是(-∞,+∞)上的增函数.(10分)

(Ⅲ)由(Ⅰ)、(Ⅱ)知,f(x)是(-∞,+∞)上的增函数,且是奇函数.
∵f(t2-(m-2)t)+f(t2-m-1)<0
∴f(t2-(m-2)t)<-f(t2-m-1)=f(-t2+m+1)
∴t2-(m-2)t<-t2+m+1(13分)
即2t2-(m-2)t-(m+1)<0对任意t∈R恒成立.
只需△=(m-2)2+4×2(m+1)=m2+4m+12<0,
解之得m∈∅(16分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案