精英家教网 > 高中数学 > 题目详情

【题目】某校共有学生2000人,其中男生900人,女生1100人,为了调查该校学生每周平均体育锻炼时间,采用分层抽样的方法收集该校100名学生每周平均体育锻炼时间(单位:小时).

1)应抽查男生与女生各多少人?

2)根据收集100人的样本数据,得到学生每周平均体育锻炼时间的频率分布表:

时间(小时)

[0,1]

(1,2]

(2,3]

(3,4]

(4,5]

(5,6]

频率

0.05

0.20

0.30

0.25

0.15

0.05

若在样本数据中有38名男学生平均每周课外体育锻炼时间超过2小时,请完成每周平均体育锻炼时间与性别的列联表,并判断是否有95%的把握认为该校学生的每周平均体育锻炼时间与性别有关

男生

女生

总计

每周平均体育锻炼时间不超过2小时

每周平均体育锻炼时间超过2小时

总计

附:K2.

PK2k0

0.100

0.050

0.010

0.005

2.706

3.841

6.635

7.879

【答案】1)男生人数为人,女生人数55.2)列联表答案见解析,有95%的把握认为该校学生的每周平均体育锻炼时间与性别有关.

【解析】

1)求出男女比例,按比例分配即可;

2)根据题意结合频率分布表,先求出二联表中数值,再结合公式计算,利用表格数据对比判断即可

1)因为男生人数:女生人数=9001100911

所以男生人数为,女生人数1004555人,

2)由频率频率直方图可知学生每周平均体育锻炼时间超过2小时的人数为:(1×0.3+1×0.25+1×0.15+1×0.05×10075人,

每周平均体育锻炼时间超过2小时的女生人数为37人,

联表如下:

男生

女生

总计

每周平均体育锻炼时间不超过2小时

7

18

25

每周平均体育锻炼时间超过2小时

38

37

75

总计

45

55

100

因为3.8923.841

所以有95%的把握认为该校学生的每周平均体育锻炼时间与性别有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{}的首项a12,前n项和为,且数列{}是以为公差的等差数列·

1)求数列{}的通项公式;

2)设,数列{}的前n项和为

①求证:数列{}为等比数列,

②若存在整数mn(mn1),使得,其中为常数,且2,求的所有可能值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数x与烧开一壶水所用时间y的一组数据,且作了一定的数据处理(如表),得到了散点图(如图).

表中.

1)根据散点图判断,哪一个更适宜作烧水时间y关于开关旋钮旋转的弧度数x的回归方程类型?(不必说明理由)

2)根据判断结果和表中数据,建立y关于x的回归方程;

3)若旋转的弧度数x与单位时间内煤气输出量t成正比,那么x为多少时,烧开一壶水最省煤气?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形为梯形,且,平面平面.

1)证明:平面平面

2)若,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义域为的偶函数,且满足,当时,,则函数在区间上零点的个数为(

A.9B.10C.18D.20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和分别为,数列满足 ,等差数列满足.

1)求数列的通项公式;

2)若数列满足,求证:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】铁人中学高二学年某学生对其亲属30人饮食习惯进行了一次调查,并用如图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主.)

(Ⅰ)根据茎叶图,帮助这位学生说明其亲属30人的饮食习惯;

(Ⅱ)根据以上数据完成下列的列联表:

主食蔬菜

主食肉类

合计

50岁以下人数

50岁以上人数

合计人数

(Ⅲ)能否在犯错误的概率不超过0.01的前提下认为其亲属的饮食习惯与年龄有关系?

附:.

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数ae2x+(a﹣2) exx.

(1)讨论的单调性;

(2)若有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,点,点B在线段CD上,且,过点的平行线交于点,设点的轨迹为

(1)求曲线的方程;

(2)已知直线与圆相切于点,且与曲线相交于两点,的中点为,求三角形面积的最大值.

查看答案和解析>>

同步练习册答案