精英家教网 > 高中数学 > 题目详情
直线x+a2y+1=0与直线(a2+1)x-by+3=0互相垂直,a、b∈R且ab≠0,则|ab|的最小值为   
【答案】分析:由题意知,两直线的斜率之积等于-1,得到a、b的关系,代入|ab|的解析式变形后使用基本不等式,求得其最小值.
解答:解:由题意得-×=-1,∴a2 b=a2+1,b==1+
∴|ab|=|a×(1+)|=|a+|=|a|+||≥2,当且仅当 a=1 或 a=-1时,取等号.
故|ab|的最小值为2,
故答案为2.
点评:本题考查两条直线垂直的性质,利用基本不等式求式子的最小值,注意检验最小值取得的条件是否具备.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直线x+a2y+1=0与直线(a2+1)x-by+3=0互相垂直,a、b∈R且ab≠0,则|ab|的最小值是(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

直线x+a2y+1=0与直线(a2+1)x-by+3=0互相垂直,a、b∈R且ab≠0,则|ab|的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

a,b∈R,已知直线x+a2y+1=0与(a2+1)x-2by+3=0互相垂直,则|ab|的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•烟台三模)设a<0,两直线x-a2y+1=0与(a2+1)x+by+3=0垂直,则ab的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

直线x+a2y+1=0与直线(a2+1)x-by+3=0互相垂直,a,b∈R,则|ab|的范围是
[2,+∞)
[2,+∞)

查看答案和解析>>

同步练习册答案