精英家教网 > 高中数学 > 题目详情
已知真命题:“函数y=f(x)的图象关于点P(a,b)成中心对称图形”的充要条件为“函数y=f(x+a)-b 是奇函数”.
(1)将函数g(x)=x3-3x2的图象向左平移1个单位,再向上平移2个单位,求此时图象对应的函数解析式,并利用题设中的真命题求函数g(x)图象对称中心的坐标;
(2)求函数h(x)=log2
2x
4-x
图象对称中心的坐标.
(1)将函数g(x)=x3-3x2的图象向左平移1个单位,再向上平移2个单位,
平移后图象对应的函数解析式为y=(x+1)3-3(x+1)2+2=x3-3x,
由于函数y=x3-3x是奇函数,
由题设真命题知,函数g(x)图象对称中心的坐标是(1,-2).
(2)设函数h(x)=log2
2x
4-x
图象对称中心为P(a,b),
由题设知函数f(x)=h(x+a)-b是奇函数.
则f(x)=log2
2(x+a)
4-(x+a)
-b
.由不等式
2(x+a)
4-(x+a)
>0的解集关于原点对称,得a=2.
此时f(x)=log2
2(x+2)
2-x
-b
,x∈(-2,2).
任取x∈(-2,2),
由f(-x)+f(x)=0,得b=1,
所以函数函数h(x)=log2
2x
4-x
图象对称中心为P(2,1)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•上海)已知真命题:“函数y=f(x)的图象关于点P(a,b)成中心对称图形”的充要条件为“函数y=f(x+a)-b 是奇函数”.
(1)将函数g(x)=x3-3x2的图象向左平移1个单位,再向上平移2个单位,求此时图象对应的函数解析式,并利用题设中的真命题求函数g(x)图象对称中心的坐标;
(2)求函数h(x)=log2
2x4-x
 图象对称中心的坐标;
(3)已知命题:“函数 y=f(x)的图象关于某直线成轴对称图象”的充要条件为“存在实数a和b,使得函数y=f(x+a)-b 是偶函数”.判断该命题的真假.如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知真命题:“函数y=f(x)的图象关于点P(a,b)成中心对称图形”的充要条件为“函数y=f(x+a)-b 是奇函数”.
(1)将函数g(x)=x3-3x2的图象向左平移1个单位,再向上平移2个单位,求此时图象对应的函数解析式,并利用题设中的真命题求函数g(x)图象对称中心的坐标;
(2)求函数h(x)=log2
2x4-x
图象对称中心的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知真命题:“函数y=f(x)的图象关于点P(a,b)成中心对称图形”的充要条件为“函数y=f(x+a)-b 是奇函数”.
(1)将函数g(x)=x3-3x2的图象向左平移1个单位,再向上平移2个单位,求此时图象对应的函数解析式,并利用题设中的真命题求函数g(x)图象对称中心的坐标;
(2)求函数h(x)=数学公式图象对称中心的坐标.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年河北省保定市蠡县二中高三(上)8月月考数学试卷(理科)(解析版) 题型:解答题

已知真命题:“函数y=f(x)的图象关于点P(a,b)成中心对称图形”的充要条件为“函数y=f(x+a)-b 是奇函数”.
(1)将函数g(x)=x3-3x2的图象向左平移1个单位,再向上平移2个单位,求此时图象对应的函数解析式,并利用题设中的真命题求函数g(x)图象对称中心的坐标;
(2)求函数h(x)=图象对称中心的坐标.

查看答案和解析>>

科目:高中数学 来源:2013年上海市春季高考数学试卷(解析版) 题型:解答题

已知真命题:“函数y=f(x)的图象关于点P(a,b)成中心对称图形”的充要条件为“函数y=f(x+a)-b 是奇函数”.
(1)将函数g(x)=x3-3x2的图象向左平移1个单位,再向上平移2个单位,求此时图象对应的函数解析式,并利用题设中的真命题求函数g(x)图象对称中心的坐标;
(2)求函数h(x)= 图象对称中心的坐标;
(3)已知命题:“函数 y=f(x)的图象关于某直线成轴对称图象”的充要条件为“存在实数a和b,使得函数y=f(x+a)-b 是偶函数”.判断该命题的真假.如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).
[解](1)
(2)
(3)

查看答案和解析>>

同步练习册答案