精英家教网 > 高中数学 > 题目详情

中,边上的高所在的直线的方程为的平分线所在直线的方程为,若点的坐标为
(1)求点的坐标;
(2)求直线BC的方程;
(3)求点C的坐标。

(1)(2)(3)

解析试题分析:(1)直线和直线的交点得,即的坐标为
(2)∵直线边上的高,由垂直得,   ,
所以直线BC的方程为
(3)∵的平分线所在直线的方程为,A(-1,0),B(1,2),,设的坐标为,则
解得    ,即的坐标为
考点:直线方程及点的对称
点评:本题中前两问较简单,第三问主要由角平分线得到两直线AC,AB关于对称,因此点C关于的对称点必定在直线AB上,因此第三问还可结合对称性求解

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知直线的斜率为.
(Ⅰ)若直线过点,求直线的方程;
(Ⅱ)若直线轴、轴上的截距之和为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线被两平行直线所截得的线段长为3,且直线过点(1,0),求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线经过点
(1)若直线平行于直线,求直线的方程;
(2)若点和点到直线的距离相等,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点,的坐标分别是.直线,相交于点,且它们的斜率之积为.
(1)求点的轨迹的方程;
(2)若过点的两直线与轨迹都只有一个交点,且,求的值;
(3)在轴上是否存在两个定点,,使得点到点的距离与到点的距离的比恒为,若存在,求出定点,;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直线经过点P(-5,-4),且与两坐标轴围成的三角形面积为5,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线与双曲线交于两点,
(1)若以线段为直径的圆过坐标原点,求实数的值。
(2)是否存在这样的实数,使两点关于直线对称?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题10分)已知直线
(1)求直线和直线交点的坐标;
(2)若直线经过点且在两坐标轴上的截距相等,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知两点,直线,在直线上求一点.
(1)使最小; (2)使最大.  

查看答案和解析>>

同步练习册答案