精英家教网 > 高中数学 > 题目详情
19.方程lgx+lg(x-2)=lg3+lg(x+2)的解为x=6.

分析 由对数的运算知x(x-2)=3(x+2),从而解得.

解答 解:∵lgx+lg(x-2)=lg3+lg(x+2),
∴x(x-2)=3(x+2),
解得,x=6或x=-1(舍去);
故答案为:x=6.

点评 本题考查了对数的运算的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数y=2sin($\frac{x}{2}$-$\frac{π}{4}$)
(1)用“五点法”作出函数图象;
(2)指出它可由函数y=sinx的图象经过哪些变换而得到;
(3)写出函数的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),点B为圆O:x2+y2=a2与y轴的交点,过点B的直线l(斜率为正)与椭圆相切于点D,并交x轴于点C,O为坐标原点,如图.
(Ⅰ)若切点坐标为D(-1,$\frac{3}{2}$),求椭圆E的方程;
(Ⅱ)若直线l与圆O的另一交点为A,且满足$\overrightarrow{BD}$=2$\overrightarrow{DA}$,求椭圆E的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.经过直线2x-y+3=0与圆x2+y2+2x-4y+1=0的两个交点,且面积最小的圆的方程是5x2+5y2+6x-18y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}的通项公式为${a_n}=\left\{\begin{array}{l}-n,\;n≤4\\ \sqrt{{n^2}-4n}-n,\;n>4\end{array}\right.(n∈N*)$,则$\lim_{n→+∞}{a_n}$=(  )
A.-2B.0C.2D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.关于x,y的一元二次方程组$\left\{{\begin{array}{l}{2x+3y=1}\\{x-2y=2}\end{array}}\right.$的系数矩阵$(\begin{array}{cc}2&3\\ 1&-2\end{array}\right.)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=sin(2x+φ),0<φ≤π图象的一条对称轴是直线$x=\frac{π}{8}$,则φ=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知各项均为正数的数列{an}的前n项和Sn满足S1>1,且$6{S_n}=a_n^2+3{a_n}+2$(n∈N*).
(1)求{an}的通项公式;
(2)设数列{bn}满足${b_n}=\left\{{\begin{array}{l}{{a_n},n为偶数}\\{{2^{a_n}},n为奇数}\end{array}}\right.$,Tn为数列{bn}的前n项和,求Tn
(3)设${C_n}=\frac{{{b_{n+1}}}}{b_n},(n为正整数)$,问是否存在正整数N,使得当任意正整数n>N时恒有Cn>2015成立?若存在,请求出正整数N的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列有关命题的说法错误的是(  )
A.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠-1,则x2-3x+2≠0”
B.若p∧q为假命题,则p、q均为假命题
C.“x=1”是“x2-3x+2=0的充分不必要条件”
D.对于命题p:?x0∈R使得x02+x0+1<0,则¬p:?x∈R,均有x2+x+1≥0

查看答案和解析>>

同步练习册答案