精英家教网 > 高中数学 > 题目详情

已知数列满足
(1)求证:数列是等差数列,并求数列的通项公式;
(2)设数列满足,对于任意给定的正整数,是否存在正整数(),使得成等差数列?若存在,试用表示;若不存在,说明理由.

(1),(2)当时,不存在满足题设条件;当时,存在,满足题设条件.

解析试题分析:(1)求证数列是等差数列,就是确定为一个常数.因此首先得到关于的关系式,因为,所以,则,然后按提示,将所求关系式进行变形,即取倒数,得:,又,所以,故是首项为,公差为的等差数列,即,所以.(2)先明确数列,由(1)得,所以,然后假设存在,得一等量关系:若成等差数列,则,如何变形,是解题的关键,这直接影响解题方向.题中暗示,用p表示,所以由得:.令,因为要,所以分情况讨论,当时,成等差数列不成立.当时,,即
试题解析:(1)因为,所以
,         2分
所以
,所以,故是首项为,公差为的等差数列,     4分
,所以.                6分
(2)由(1)知,所以
①当时,
成等差数列,则),
因为,所以
所以()不成立.                                         9分
②当时,若

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

数列是等差数列,,前四项和
(1)求数列的通项公式;
(2)记,计算

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1) 为等差数列的前项和,,求
(2)在等比数列中,若,求首项和公比

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数, 数列满足
(1)求数列的通项公式;
(2)令,若对一切成立,求最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的前n项和为,存在常数A,B,C,使得对任意正整数n都成立.
⑴若数列为等差数列,求证:3A B+C=0;
⑵若数列的前n项和为,求;
⑶若C=0,是首项为1的等差数列,设数列的前2014项和为P,求不超过P的最大整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为等差数列的前项和,已知.
(1)求
(2)设,数列的前项和记为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列为等比数列,其前n项和为,且满足成等差数列.
(1)求数列的通项公式;
(2)已知,记,求数列前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足
(1)证明数列为等比数列,并求出数列的通项公式;
(2)若数列满足.证明:数列是等差数列.
(3)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等比数列中,已知
(1)求数列的通项公式;
(2)若分别为等差数列的第3项和第5项,试求数列的通项公式及前项和

查看答案和解析>>

同步练习册答案