【题目】秸秆还田是当今世界上普通重视的一项培肥地力的增产措施,在杜绝了秸秆焚烧所造成的大气污染的同时还有增肥增产作用.某农机户为了达到在收割的同时让秸秆还田,花元购买了一台新型联合收割机,每年用于收割可以收入万元(已减去所用柴油费);该收割机每年都要定期进行维修保养,第一年由厂方免费维修保养,第二年及以后由该农机户付费维修保养,所付费用(元)与使用年数的关系为:,已知第二年付费元,第五年付费元.
(1)试求出该农机户用于维修保养的费用(元)与使用年数的函数关系;
(2)这台收割机使用多少年,可使平均收益最大?(收益=收入-维修保养费用-购买机械费用)
科目:高中数学 来源: 题型:
【题目】已知数列满足,.
(1)求数列的通项公式;
(2)求数列的前项和;
(3)设数列满足,其中.记的前项和为.是否存在正整数,使得成立?若存在,请求出所有满足条件的;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x-a|-1,(a为常数).
(1)若f(x)在x∈[0,2]上的最大值为3,求实数a的值;
(2)已知g(x)=xf(x)+a-m,若存在实数a∈(-1,2],使得函数g(x)有三个零点,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于各数不相等的正整数组(i1, i2, …, in),(n是不小于2的正整数),如果在p>q时有,则称ip和iq是该数组的一个“好序”,一个数组中“好序”的个数称为此数组的“好序数”,例如,数组(1, 3, 4, 2)中有好序“1, 3”,“1, 4”,“1, 2”,“3, 4”,其“好序数”等于4. 若各数互不相等的正整数组(a1, a2, a3, a4, a5, a6, a7)的“好序数”等于3,则(a7,a6, a5, a4, a3, a2, a1)的“好序数”是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合M是具有下列性质的函数的全体:存在实数对,使得对定义域内任意实数x都成立.
(1)判断函数,是否属于集合;
(2)若函数具有反函数,是否存在相同的实数对,使得与同时属于集合若存在,求出相应的;若不存在,说明理由;
(3)若定义域为的函数属于集合,且存在满足有序实数对和;当时,的值域为,求当时函数的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为,对于任意实数,,都有,当时,.
(1)求的值;
(2)证明:当时,.
(3)证明:在上单调递减.
(4)若对任意恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数对任意的实数m,n都有,且当时,.
(1)求;
(2)求证:在R上为增函数;
(3)若,且关于x的不等式对任意的恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=,g(x)=(a>0,且a≠1).
(1)求函数φ(x)=f(x)+g(x)的定义域;
(2)试确定不等式f(x)≤g(x)中x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过随机询问名不同性别的大学生在购买食物时是否看营养说明,得到如下列联表:
男 | 女 | 总计 | |
读营养说明 | |||
不读营养说明 | |||
总计 |
附:
(1)由以上列联表判断,能否在犯错误的概率不超过的前提下认为性别和是否看营养说明有关系呢?
(2)从被询问的名不读营养说明的大学生中随机选取名学生,求抽到女生人数的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com