【题目】为了解本学期学生参加公益劳动的情况,某校从初高中学生中抽取100名学生,收集了他们参加公益劳动时间(单位:小时)的数据,绘制图表的一部分如表.
(1)从男生中随机抽取一人,抽到的男生参加公益劳动时间在的概率:
(2)从参加公益劳动时间的学生中抽取3人进行面谈,记为抽到高中的人数,求的分布列;
(3)当时,高中生和初中生相比,那学段学生平均参加公益劳动时间较长.(直接写出结果)
科目:高中数学 来源: 题型:
【题目】已知椭圆:()的左焦点为,是上一点,且与轴垂直,,分别为椭圆的右顶点和上顶点,且,且的面积是,其中是坐标原点.
(1)求椭圆的方程.
(2)若过点的直线,互相垂直,且分别与椭圆交于点,,,四点,求四边形的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为F1,F2,过点F1的直线与C交于A,B两点.△ABF2的周长为,且椭圆的离心率为.
(1)求椭圆C的标准方程:
(2)设点P为椭圆C的下顶点,直线PA,PB与y=2分别交于点M,N,当|MN|最小时,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,等腰梯形ABCD中,,,,O为BE中点,F为BC中点.将沿BE折起到的位置,如图2.
(1)证明:平面;
(2)若平面平面BCDE,求点F到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为评估两套促销活动方案(方案1运作费用为5元/件;方案2的运作费用为2元件),在某地区部分营销网点进行试点(每个试点网点只采用一种促销活动方案),运作一年后,对比该地区上一年度的销售情况,制作相应的等高条形图如图所示.
(1)请根据等高条形图提供的信息,为该公司今年选择一套较为有利的促销活动方案(不必说明理由);
(2)已知该公司产品的成本为10元/件(未包括促销活动运作费用),为制定本年度该地区的产品销售价格,统计上一年度的8组售价(单位:元/件,整数)和销量(单位:件)如下表所示:
售价 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 |
销量 | 840 | 800 | 740 | 695 | 640 | 580 | 525 | 460 |
①请根据下列数据计算相应的相关指数,并根据计算结果,选择合适的回归模型进行拟合;
②根据所选回归模型,分析售价定为多少时?利润可以达到最大.
52446.95 | 13142 | 122.89 | |
124650 |
(附:相关指数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在平面直角坐标系中,直线的参数方程为(为参数,),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)若,求直线的普通方程及曲线的直角坐标方程;
(Ⅱ)若直线与曲线有两个不同的交点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】棉花的优质率是以其纤维长度来街量的,纤维越长的棉花晶质越高.棉花的品质分类标准为:纤维长度小于等于的为粗绒棉,纤维长度在的为细绒棉,纤维长度大于的为长绒棉,其中纤维长度在以上的棉花又名“军海1号”.某采购商从新疆某一棉花基地抽测了根棉花的纤维长度,得到数据如下图频率分布表所示:
纤维长度 | ||||
根数 |
(1)若将频率作为概率, 根据以上数据,能否认为该基地的这批棉花符合“长绒棉占全部棉花的以上”的要求?
(2)用样本估计总体, 若这批榨花共有,基地提出了两种销售方案给采购商参考.方案一:不分等级卖出,每千克按元计算,方案二:对棉花先分等级再销售,分级后不同等级的棉花售价如下表:
纤维长度 | ||||
售价 |
从来购商的角度,请你帮他决策一下该用哪个方案.
(3)用分层抽样的方法从长绒棉中抽取6根棉花,再从此根棉花中抽取两根进行检验.求抽到的两根棉花只有一根是“军海1号”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
已知抛物线的焦点为,为上异于原点的任意一点,过点的直线交于另一点,交轴的正半轴于点,且有.当点的横坐标为时,为正三角形.
(Ⅰ)求的方程;
(Ⅱ)若直线,且和有且只有一个公共点,
(ⅰ)证明直线过定点,并求出定点坐标;
(ⅱ)的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com