精英家教网 > 高中数学 > 题目详情

【题目】如图所示,已知多面体的直观图(图1)和它的三视图(图2),

1)在棱上是否存在点,使得平面?若存在,求的值,并证明你的结论;若不存在,说明理由;

2)求二面角的余弦值.

【答案】1)存在,证明见解析,;(2.

【解析】

1)根据三视图中的线段长度,判断交点的位置,取靠近的一个三等分点,进行分析证明并求比值;

2)建立空间直角坐标系,利用平面法向量的余弦值计算出二面角的余弦值.

1)连接,取靠近点的一个三等分点,连接

根据三视图可知,所以

又因为,所以,所以

又因为平面平面

所以平面,故存在满足条件且靠近点的一个三等分点,

此时

2)取为空间直角坐标系的轴,建立空间直角坐标系如下图:

根据三视图可知:

设平面的一个法向量,平面的一个法向量

因为

所以,取,所以

所以,取,所以

所以

根据立体图形可知二面角的平面角为钝角,

所以二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】交通指数是指交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指数值,记交通指数为,其范围为,分别有五个级别:,畅通;,基本畅通;,轻度拥堵;,中度拥堵;,严重拥堵.在晚高峰时段(),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的频率分布直方图如图所示.

(1)求出轻度拥堵、中度拥堵、严重拥堵的路段的个数;

(2)用分层抽样的方法从轻度拥堵、中度拥堵、严重拥堵的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;

(3)从(2)中抽取的6个路段中任取2个,求至少有1个路段为轻度拥堵的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是正方形,平面平面分别为中点,

(Ⅰ)求证:平面

(Ⅱ)求二面角的正弦值;

(Ⅲ)在棱上是否存在一点,使平面?若存在,指出点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的各项排成如图所示的三角形数阵,数阵中每一行的第一个数构成等差数列的前项和,且.

(1)若数阵中从第3行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知,求的值;

(2)设,当时,对任意,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:极坐标与参数方程

已知在一个极坐标系中点的极坐标为

1)求出以为圆心,半径长为2的圆的极坐标方程(写出解题过程)并画出图形.

2)在直角坐标系中,以圆所在极坐标系的极点为原点,极轴为轴的正半轴建立直角坐标系,点是圆上任意一点, 是线段的中点,当点在圆上运动时,求点的轨迹的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车的燃油效率是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )

A. 消耗1升汽油,乙车最多可行驶5千米

B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多

C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油

D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中,动点P到定点F(1,0)的距离比到定直线x=-2的距离小1.

1)求动点P的轨迹C的方程;

2)若直线l1)中轨迹C交于AB两点,通过A和原点O的直线交直线x=-1D,求证:直线DB平行于x.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)若,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为比较甲乙两地某月12时的气温状况,选取该月5天中12时的气温数据(单位:)制成如图所示的茎叶图,考虑以下结论:

①甲地该月12时的平均气温低于乙地该月12时的平均气温;

②甲地该月12时的平均气温高于乙地该月12时的平均气温;

③甲地该月12时的气温的标准差小于乙地该月12时的气温的标准差;

④甲地该月12时的气温的标准差大于乙地该月12时的气温的标准差.

其中根据茎叶图能得到的统计结论的编号为(

A.①③B.②③C.①④D.②④

查看答案和解析>>

同步练习册答案