精英家教网 > 高中数学 > 题目详情

【题目】在一次“综艺类和体育类节目,哪一类节目受中学生欢迎”的调查中,随机调查了男女各100名学生,其中女同学中有73人更爱看综艺类节目,另外27人更爱看体育类节目;男同学中有42人更爱看综艺类节目,另外58人更爱看体育类节目.

(1)根据以上数据填写如下列联表:

综艺类

体育类

总计

总计

(2)试判断是否有的把握认为“中学生更爱看综艺类节目还是体育类节目与性别有关”.

参考公式:,其中.

临界值表:

0.025

0.01

0.005

0.001

5.024

6.635

7.879

10.828

【答案】(1)见解析; (2)有的把握认为“中学生更爱看综艺类节目还是体育类节目与性别有关”.

【解析】

1)根据题目中的数据对应填写表格,(2)根据公式计算,再对照数据作判断.

(1)根据题目中的数据填写列联表,如下;

综艺类

体育类

总计

73

27

100

42

58

100

总计

115

85

200

(2)估计表中数据,计算

所以有的把握认为“中学生更爱看综艺类节目还是体育类节目与性别有关”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为,以下结论中不正确的为

A. 15名志愿者身高的极差小于臂展的极差

B. 15名志愿者身高和臂展成正相关关系,

C. 可估计身高为190厘米的人臂展大约为189.65厘米,

D. 身高相差10厘米的两人臂展都相差11.6厘米,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题:①任意两条直线都可以确定一个平面;②若两个平面有3个不同的公共点,则这两个平面重合;③直线abc,若ab共面,bc共面,则ac共面;④若直线l上有一点在平面α外,则l在平面α.其中错误命题的个数是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方形ABCD的边长为2,对角线ACBD相交于点O,动点P满足,若,其中mnR,则的最大值是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆, 过点的直线与椭圆交于MN两点(M点在N点的上方),与轴交于点E.

(1)当时,求点MN的坐标;

(2)当时,设,求证:为定值,并求出该值;

(3)当时,点D和点F关于坐标原点对称,若△MNF的内切圆面积等于,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右焦点分别为,过的直线交椭圆于两点,若椭圆C的离心率为的周长为8.

(Ⅰ)求椭圆C的方程;

(Ⅱ)已知直线与椭圆C交于两点,是否存在实数k使得以为直径的圆恰好经过坐标原点?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(0,-2),椭圆E (a>b>0)的离心率为F是椭圆E的右焦点,直线AF的斜率为O为坐标原点.

(1)E的方程;

(2)设过点A的动直线lE相交于PQ两点.OPQ的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地因受天气,春季禁渔等因素影响,政府规定每年的7月1日以后的100天为当年的捕鱼期.某渔业捕捞队对吨位为的20艘捕鱼船一天的捕鱼量进行了统计,如下表所示:

捕鱼量(单位:吨)

频数

2

7

7

3

1

根据气象局统计近20年此地每年100天的捕鱼期内的晴好天气情况如下表(捕鱼期内的每个晴好天气渔船方可捕鱼,非晴好天气不捕鱼):

晴好天气(单位:天)

频数

2

7

6

3

2

(同组数据以这组数据的中间值作代表)

(Ⅰ)估计渔业捕捞队吨位为的渔船单次出海的捕鱼量的平均数

(Ⅱ)已知当地鱼价为2万元/吨,此种捕鱼船在捕鱼期内捕鱼时,每天成本为10万元/艘,若不捕鱼,每天成本为2万元/艘,若以(Ⅰ)中确定的作为上述吨位的捕鱼船在晴好天气捕鱼时一天的捕鱼量.

①请依据往年天气统计数据,试估计一艘此种捕鱼船年利润不少于1600万元的概率;

②设今后3年中,此种捕鱼船每年捕鱼情况一样,记一艘此种捕鱼船年利润不少于1600万元的年数为,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】惠州市某学校需要从甲、乙两名学生中选1人参加数学竞赛,抽取了近期两人5次数学考试的分数,统计结果如下表:

第一次

第二次

第三次

第四次

第五次

80

85

71

92

87

90

76

75

92

82

1)若从甲、乙两人中选出1人参加数学竞赛,你认为选谁合适?请说明理由.

2)若数学竞赛分初赛和复赛,在初赛中答题方案如下:

每人从5道备选题中随机抽取3道作答,若至少答对其中2道,则可参加复赛,否则被淘汰.假设被选中参赛的学生只会5道备选题中的3道,求该学生能进人复赛的概率.

查看答案和解析>>

同步练习册答案