精英家教网 > 高中数学 > 题目详情
3.某几何体的正视图如图所示,则该几何体的俯视图不可能的是(  )
A.B.C.D.

分析 根据几何体的正视图,对4个选项进行分析,即可得出结论.

解答 解:根据几何体的正视图,得;
当几何体是球体与圆柱体的组合体,且球半径与底面圆半径相等时,俯视图是A;
当几何体上部为平放的圆柱体,下部为正方体的组合体,求圆柱的高与底面圆直径都为直方图的棱长时,
俯视图是B;
当几何体的上部为球体,下部为正方体的组合体,且球为正方体的内切球,其俯视图是C;
D为俯视图时,与正视图矛盾,所以不成立.
故选:D.

点评 本题考查了空间几何体三视图的应用问题,也考查了空间想象能力的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.定义一个集合A的所有子集组成的集合叫做集合A的幂集,记为P(A),用n(A)表示有限集A的元素个数.给出下列命题:
①对于任意集合A,都有A∈P(A);
②存在集合A,使得n[P(A)]=3;
③若A∩B=∅,则P(A)∩P(B)=∅;
④若A⊆B,则P(A)⊆P(B);
⑤若n(A)-n(B)=1,则n[P(A)]=2×n[P(B)].
其中所有正确命题的序号为①④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别是F1,F2,离心率是e=$\frac{1}{2}$,P点在椭圆上,△PF1F2的内切圆面积最大值是$\frac{4}{3}$π.
(1)求椭圆方程;
(2)若A,B,C,D是椭圆上不重合的四个点,$\overrightarrow{{F}_{1}A}$∥$\overrightarrow{{F}_{1}C}$,$\overrightarrow{{F}_{1}B}$∥$\overrightarrow{{F}_{1}D}$,$\overrightarrow{AC}$•$\overrightarrow{BD}$D=0,求:|$\overrightarrow{AC}$|+|$\overrightarrow{BD}$|的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在(2x-3y)10的展开式中,求:
(1)各项系数的和;
(2)奇数项的二项式系数和与偶数项的二项式系数和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,余弦定理表达正确的是(  )
A.a2=b2+c2+2accosAB.b2=a2+c2-2accosB
C.c2=a2+b2-2absinCD.以上结果都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知双曲线的两个焦点F1,F2之间的距离为26,双曲线上一点到两焦点的距离之差的绝对值为24,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow{b}$=(sinx,sinx),$\overrightarrow{c}$=(-1,0).
(1)求函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$的周期和单调减区间;
(2)若x∈[-$\frac{3π}{8}$,$\frac{π}{4}$],函数f(x)=λ$\overrightarrow{a}$•$\overrightarrow{b}$的最大值为$\frac{1}{2}$,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.非负实数x满足$\left\{\begin{array}{l}{x+2y-2≤0}\\{x-y-1≤0}\end{array}\right.$,则z=3x+y的最大值为$\frac{13}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.把下列各角的度数化为弧度数,并写成0到2π的角加上2kπ(k∈Z)的形式:
(1)-64°;
(2)400°;
(3)-722°30′.

查看答案和解析>>

同步练习册答案