精英家教网 > 高中数学 > 题目详情
3.命题“?x∈R,?n∈N*,使得n≥x2”的否定形式是(  )
A.?x∈R,?n∈N*,使得n<x2B.?x∈R,?n∈N*,使得n<x2
C.?x∈R,?n∈N*,使得n<x2D.?x∈R,?n∈N*,使得n<x2

分析 特称命题的否定是全称命题,全称命题的否定是特称命题,依据规则写出结论即可

解答 解:“?x∈R,?n∈N*,使得n≥x2”的否定形式是“?x∈R,?n∈N*,使得n<x2
故选:D.

点评 本题考查命题的否定,解本题的关键是掌握住特称命题的否定是全称命题,书写答案是注意量词的变化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若xlog32=1,则2x+2-x=$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若存在实数m,n使函数f(x)=$\sqrt{x+3}$+k的定义域为[m,n],值域为[-n,-m],则实数k的取值范围是[2,$\frac{9}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.有下列命题:
①已知$\overrightarrow{a}$,$\overrightarrow{b}$是平面内两个非零向量,则平面内任一向量$\overrightarrow{c}$都可表示为λ$\overrightarrow{a}$+μ$\overrightarrow{b}$,其中λ,μ∈R;
②对任意平面四边形ABCD,点E、F分别为AB、CD的中点,则$2\overrightarrow{EF}=\overrightarrow{AD}+\overrightarrow{BC}$;
③直线x-y-2=0的一个方向向量为(1,-1);
④在△ABC中,AB=2,AC=3,$\overrightarrow{AB}•\overrightarrow{BC}=1$则BC=$\sqrt{3}$;
其中正确的是②④(写出所有正确命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=(x+1)lnx-a(x-1).
(1)若函数f(x)的图象与直线y=x-1相切,求a的值;
(2)当1<x<2时,求证:$\frac{1}{lnx}-\frac{1}{ln(x-1)}<\frac{1}{(x-1)(2-x)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)=$\left\{\begin{array}{l}{x^2}-131,x>10\\ f(f(x+2)),x≤10\end{array}\right.$,则f(8)的值为(  )
A.13B.-67C.1313D.-6767

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF,若|AB|=10,|AF|=6,cos∠FAB=$\frac{3}{5}$,则C的离心率为(  )
A.$\frac{7}{5}$B.$\frac{5}{7}$C.$\frac{4}{5}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈[-2,0]时,f(x)=x2+2x,若x∈[2,4]时,$f(x)≥2log_2^{(t+1)}$恒成立,则实数t的取值范围是(-1,-$\frac{3}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若P=$\sqrt{a}$+$\sqrt{a+5}$,Q=$\sqrt{a+2}$+$\sqrt{a+3}$(a≥0),则P,Q的大小关系是(  )
A.P>QB.P=QC.P<QD.由a的取值确定

查看答案和解析>>

同步练习册答案