精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax2+bx+c(a,b,c为实数,a≠0),定义域D:[-1,1]
(1)当a=1,b=-1时,若函数f(x)在定义域内恒小于零,求c的取值范围;
(2)当a=1,常数b<0时,若函数f(x)在定义域内恒不为零,求c的取值范围;
(3)当b>2a>0时,在D上是否存在x,使得|f(x)|>b成立?(要求写出推理过程)

解:(1)a=1,b=-1y=x2-x+c<0在[-1,1]恒成立
则-c>x2-x在[-1,1]上恒成立
令g(x)=x2-x,x∈[-1,1],则可得g(x)max=2
则-c>2即c<-2
(2)a=1,b<0,f(x)=x2+bx+c≠0在[-1,1]上恒成立?-c≠h(x)=x2+bx在[-1,1]上恒成立,
而函数h(x)=x2+bx的对称轴x=>0
(当b<-2,函数g(x)在[-1,1]单调递减,则可得g(1)≤g(x)≤g(-1),即1+b≤g(x)≤1-b
所以,-c>1-b或-c<1+b 所以c<b-1或c>-1-b
(II)当即2≤b<0时,,即
所以
所以,
(3)假设在D上存在x,使得|f(x)|>b成立则只要|f(x)|max>b即可
由于b>2a>0,则对称轴x=-
根据二次函数的性质可得|f(x)|的最大值=max{||f(1)|,|f(-1)|}
|a+b+c|>b或|a-b+c|>b
从而可得,存在实数满足条件
分析:(1)a=1,b=-1y=x2-x+c<0在[-1,1]恒成立,则-c>x2-x在[-1,1]上恒成立,令g(x)=x2-x,x∈[-1,1],-c>g(x)max可求
(2)a=1,b<0,f(x)=x2+bx+c≠0在[-1,1]上恒成立?-c≠h(x)=x2+bx在[-1,1]上恒成立,结合函数h(x)的范围可求c得范围
(3)假设在D上存在x,使得|f(x)|>b成立则只要|f(x)|max>b即可
点评:本题主要考查了二次函数的性质的应用,解题的关键是熟练掌握并能灵活利用二次函数的性质及一定的推理与运算的能力
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案