精英家教网 > 高中数学 > 题目详情
9.正四面体ABCD的棱长为4,内切球的表面积为$\frac{8π}{3}$.

分析 作出正四面体的图形,确定球的球心位置为O,说明OE是内切球的半径,运用勾股定理计算,即可得到球的体积.

解答 解:如图O为正四面体ABCD的内切球的球心,正四面体的棱长为4,
所以OE为内切球的半径,设OA=OB=R,
在等边三角形BCD中,BE=$\frac{4\sqrt{3}}{3}$,
AE=$\frac{4\sqrt{6}}{3}$.
由OB2=OE2+BE2,即有R2=($\frac{4\sqrt{6}}{3}$-R)2+$\frac{16}{3}$
解得,R=$\frac{3\sqrt{6}}{4}$.OE=AE-R=$\frac{\sqrt{6}}{3}$,
则其内切球的半径是$\frac{\sqrt{6}}{3}$,
所以四面体的内切球的表面积为4π•$\frac{6}{9}$=$\frac{8π}{3}$.
故答案为:$\frac{8π}{3}$.

点评 本题考查正四面体的内切球半径的求法,考查内切球的表面积的求法,正确求出半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2-4x-4.
(1)若函数定义域为(-1,1],求函数值域和最值
(2)若函数定义域为[0,3),求函数值域和最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.作短轴长为2b的椭圆的内接矩形,若该矩形面积的最大值的取值范围是[3b2,4b2],则椭圆离心率的取值范围是(  )
A.[$\frac{\sqrt{3}}{2}$,1)B.[$\frac{\sqrt{5}}{3}$,$\frac{\sqrt{3}}{2}$]C.(0,$\frac{\sqrt{5}}{3}$]D.(0,$\frac{\sqrt{3}}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知x>0,y>0,且4x+y=1.
(I)求$\frac{1}{x}+\frac{1}{y}$的最小值;
(2)求log2x+log2y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知定点A(3,1),P是椭圆$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}=1$上的任一点,F1,F2分别是椭圆的左右焦点,则|PF2|+|PA|的最小值为10-5$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数f(x)=loga(1+x)(a>0且a≠1),x∈(-1,0)时有f(x)>0,
证明:对任意x1>1,x2>1有$\frac{f({x}_{1}-1)+f({x}_{2}-1)}{2}$≥f($\frac{{x}_{1}+{x}_{2}-2}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设A、B、C、D分别表示下列角的取值范围:
(1)A是直线倾斜角的取值范围;
(2)B是锐角;
(3)C是直线与平面所角的取值范围;
(4)D是两异面直线所成角的取值范围,用“⊆”把集台A、B、C、D连接起来得到B⊆D⊆C⊆A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知$\frac{sinβ}{sinα}$=cos(α+β),其中α,β为锐角.
(1)求证:tanβ=$\frac{sin2α}{3-cos2α}$;
(2)求tanβ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在极坐标系中已知圆C:ρ2-4$\sqrt{2}ρcos(θ-\frac{π}{4})+6=0$与直线 L:3ρcosθ+4ρsinθ+6=0
(1)将直线L和圆C的极坐标方程化为直角坐标方程.
(2)求圆C上的点到直线L的最短距离.

查看答案和解析>>

同步练习册答案