【题目】已知函数的最大值为2.
(Ⅰ)求函数在上的单调递减区间;
(Ⅱ)中,角,,所对的边分别是,,,且,,若,求的面积.
【答案】(1);(2).
【解析】试题分析:(1)将 解析式辅助角化为一个角的正弦函数,由正弦函数的值域表示出 的最大值,由已知最大值为 列出关于 的方程,求出方程的解得到的值,进而确定出解析式,由正弦定理的递减区间为 ,列出关于 的不等式,求出不等式的解集即可得到在 上的单调递减区间;(2)由(1)确定的解析式化简,再利用正弦定理化简,得出 ①, 利用余弦定理化简,得到 ②,将①代入②求出 的值,再由 的值,利用三角形的面积公式即可,求出三角形 的面积.
试题解析:(1)由题意,的最大值,所以,
而,于是,.
为递减函数,则满足().
即().
所以在上的单调递减区间为.
(2)设的外接圆半径为,由题意,得.
化简,得
.
由正弦定理,得,.①
由余弦定理,得,即.②
将①式代入②,得.
解得,或(舍去),.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax﹣lnx﹣1,若曲线y=f(x)在点(2,f(2))处的切线与直线2x+y﹣1=0垂直.
(1)求a的值;
(2)函数g(x)=f(x)﹣m(x﹣1)(m∈R)恰有两个零点x1 , x2(x1<x2),求函数g(x)的单调区间及实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设定义域为R的函数 ,若关于x的方程f2(x)+bf(x)+c=0有三个不同的解x1 , x2 , x3 , 则 的值是( )
A.1
B.3
C.5
D.10
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十八届五中全会公报指出:努力促进人口均衡发展,坚持计划生育的基本国策,完善人口发展战略,全面实施一对夫妇可生育两个孩子的政策,提高生殖健康、妇幼保健、托幼等公共服务水平.为了解适龄公务员对放开生育二胎政策的态度,某部门随机调查了100位30到40岁的公务员,得到情况如下表:
男公务员 | 女公务员 | |
生二胎 | 40 | 20 |
不生二胎 | 20 | 20 |
(1)是否有95%以上的把握认为“生二胎与性别有关”,并说明理由;
(2)把以上频率当概率,若从社会上随机抽取3位30到40岁的男公务员,记其中生二胎的人数为X,求随机变量X的分布列,数学期望.
附:K2=
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】商品在近30天内每件的销售价格P(元)与时间t(天)的函数关系p=
该商品的日销售量Q(件)时间t(天)的函数关系Q=﹣t+40(0<t≤30,t∈N*)
求该商品的日销售额的最大值,并指出日销售额最大一天是30天中的第几天?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的上下两个焦点分别为,过点与轴垂直的直线交椭圆于两点, 的面积为,椭圆的离心率为.
(1)求椭圆的标准方程;
(2)已知为坐标原点,直线与轴交于点,与椭圆交于两个不同的点,若,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方体ABCDA1B1C1D1中,M为DD1的中点,O为四边形ABCD的中心,P为棱A1B1上任一点,则异面直线OP与MA所成的角为( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中中,曲线的参数方程为为参数, ). 以坐标原点为极点, 轴正半轴为极轴建立极坐标系,已知直线的极坐标方程为.
(1)设是曲线上的一个动点,当时,求点到直线的距离的最大值;
(2)若曲线上所有的点均在直线的右下方,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com