分析 利用三角函数的诱导公式化简原式,然后将$\frac{2π}{3}$代入并用特殊三角函数值求出答案.
解答 解:f(θ)=$\frac{2co{s}^{3}θ+si{n}^{2}(2π-θ)+sin(\frac{π}{2}+θ)-3}{2+2si{n}^{2}(\frac{3π}{2}+θ)+cos(-θ)}$=$\frac{2co{s}^{3}θ+si{n}^{2}θ+cosθ-3}{2+2co{s}^{2}θ+cosθ}$
=$\frac{2co{s}^{3}θ+1-co{s}^{2}θ+cosθ-3}{2+2co{s}^{2}θ+cosθ}$=$\frac{2(cosθ-1)(co{s}^{2}θ+cosθ+1)-cosθ(cosθ-1)}{2+2co{s}^{2}θ+cosθ}$
=$\frac{(cosθ-1)(2co{s}^{2}θ+2cosθ-cosθ+2)}{1+2co{s}^{2}θ+cosθ}$=cosθ-1,
∵cos($\frac{2π}{3}$)=$-\frac{1}{2}$,
∴f($\frac{2π}{3}$)=$-\frac{1}{2}-1=-\frac{3}{2}$.
点评 本题考查了三角函数的诱导公式,考查了三角函数的值,是中档题.
科目:高中数学 来源: 题型:选择题
A. | 在回归分析模型中,残差平方和越大,说明模型的拟合效果越好 | |
B. | 线性相关系数|r|越大,两个变量的线性相关性越强;反之,线性相关性越弱 | |
C. | 由变量x和y的数据得到其回归直线方程l:$\widehat{y}$=$\widehat{b}$x+a,则l一定经过P($\overline{x}$,$\overline{y}$) | |
D. | 在回归直线方程$\widehat{y}$=0.1x+1中,当解释变量x每增加一个单位时,预报变量$\widehat{y}$增加0.1个单位. |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -1 | B. | 1 | C. | -2 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com