精英家教网 > 高中数学 > 题目详情

从装有个球(其中个白球,1个黑球)的口袋中取出个球,共有种取法。在这种取法中,可以分成两类:一类是取出的个球全部为白球,另一类是含有一个黑球,共有,即有等式:成立.试根据上述思想化简下列式子    .

 

【答案】

【解析】解:在中,从第一项到最后一项分别表示:从装有n个白球,k个黑球的袋子里,取出m个球的所有情况取法总数的和,故答案应为:从从装有n+k球中取出m个球的不同取法数故答案为

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

从装有个球(其中个白球,1个黑球)的口袋中取出个球,共有种取法。在这种取法中,可以分成两类:一类是取出的个球全部为白球,共有,即有等式:成立。试根据上述思想化简下列式子:           。)

查看答案和解析>>

科目:高中数学 来源: 题型:

从装有个球(其中个白球,1个黑球)的口袋中取出个球,共有种取法。在这种取法中,可以分成两类:一类是取出的个球全部为白球,共有,即有等式:成立。试根据上高考资源网述思想化简下列式子:

            

查看答案和解析>>

科目:高中数学 来源:2010年福州市八县(市)协作校高二第二学期期末联考数学(理)试卷 题型:填空题

从装有个球(其中个白球,个黑球)的口袋中取出个球(),共有种取法。在这种取法中,可以分成两类:一类是取出的个球全部为白球,一类是取出的个白球和一个黑球。共有C ,即等式 成立。根据上述思想化简式子=      

(其中1 ,)

 

查看答案和解析>>

科目:高中数学 来源:2012届河南郑州市高二下学期第二次月考试题数学(理科) 题型:填空题

从装有个球(其中个白球,1个黑球)的口袋中取出个球(),共有种取法,在这种取法中,可以分为两类:一类是取出的个球全部为白球,另一类是取出的m个球中有1个黑球,共有种取法,即有等式:成立.试根据上述思想化简下列式子:

__________________.

 

查看答案和解析>>

同步练习册答案