精英家教网 > 高中数学 > 题目详情

(14分)数列中,      
(1)求证:时,是等比数列,并求通项公式。
(2)设  求:数列的前n项的和
(3)设 、 、 。记 ,数列的前n项和。证明: 

(1) 。;(2);(3) ,

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

数列的前项和记为
(Ⅰ)求的通项公式;
(Ⅱ)等差数列的各项为正,其前项和为,且,又成等比数列,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)在数列中,,并且对于任意n∈N*,都有
(1)证明数列为等差数列,并求的通项公式;
(2)设数列的前n项和为,求使得的最小正整数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知数列的前n项和满足(>0,且)。数列满足
(I)求数列的通项。
(II)若对一切都有,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列{an}满足4a1=1,an-1=[(-1)nan-1-2]an(n≥2),(1)试判断数列{1/an+(-1)n}是否为等比数列,并证明;(2)设an2?bn=1,求数列{bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分l0分) 在等比数列中,已知.
求数列的通项公式;
设数列的前n项和为,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知是等比数列的前项和,且
(Ⅰ)求数列的通项公式
(Ⅱ)若数列是单调递减数列,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知数列{}满足,
(I)写出,并推测的表达式;
(II)用数学归纳法证明所得的结论。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某少数民族的刺绣有着悠久的历史,如下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第个图形包含个小正方形.

(1)求出的值;
(2)利用合情推理的“归纳推理思想”,归纳出之间的关系式,并根据你得到的关系式求出的表达式;
(3)求的值.

查看答案和解析>>

同步练习册答案