【题目】如图,在四棱锥P一ABCD中,已知,点Q为AC中点,底面ABCD,,点M为PC的中点.
(1)求直线PB与平面ADM所成角的正弦值;
(2)求二面角D-AM-C的正弦值;
(3)记棱PD的中点为N,若点Q在线段OP上,且平面ADM,求线段OQ的长.
【答案】(1);(2);(3).
【解析】
以O为原点,分别以向量的方向为x轴,y轴,z轴正方向,可以建立空间直角坐标系,(1)求出直线PB的方向向量,利用向量垂直数量积为零列方程求出平面ADM的法向量,可求直线PB与平面ADM所成角的正弦值;(2)由已知可得平面,故是平面的一个法向量,结合(1)中平面ADM的法向量,利用空间向量夹角余弦公式可求二面角D-AM-C的余弦值,从而可得正弦值;(3)设线段OQ的长为,则点Q的坐标为,由已知可得点N的坐标为,利用直线与平面的法向量数量积为零列方程求解即可.
依题意,以O为原点,分别以向量的方向为x轴,y轴,z轴正方向,可以建立空间直角坐标系(如图),可得,
.
(1)依题意,可得,
设为平面ADM的法向量,则,
即,不妨设,可得,
又, 故,
直线PB与平面ADM所成角的正弦值为;
(2)由已知可得,
所以平面,
故是平面的一个法向量,
依题意可得,
因此有,于是有,
二面角D-AM-C的正弦值;
(3)设线段OQ的长为,则点Q的坐标为,
由已知可得点N的坐标为,进而可得,
由平面ADM,故,
即,解得,
线段OQ的长为.
科目:高中数学 来源: 题型:
【题目】某次高三年级模拟考试中,数学试卷有一道满分10分的选做题,学生可以从A,B两道题目中任选一题作答.某校有900名高三学生参加了本次考试,为了了解该校学生解答该选做题的得分情况,作为下一步教学的参考依据,计划从900名考生的选做题成绩中随机抽取一个容量为10的样本,为此将900名考生选做题的成绩按照随机顺序依次编号为001~900.
(1)若采用系统抽样法抽样,从编号为001~090的成绩中用简单随机抽样确定的成绩编号为025,求样本中所有成绩编号之和;
(2)若采用分层抽样,按照学生选择A题目或B题目,将成绩分为两层.已知该校高三学生有540人选做A题目,有360人选做B题目,选取的样本中,A题目的成绩平均数为5,方差为2,B题目的成绩平均数为5.5,方差为0.25.
(i)用样本估计该校这900名考生选做题得分的平均数与方差;
(ii)本选做题阅卷分值都为整数,且选取的样本中,A题目成绩的中位数和B题目成绩的中位数都是5.5.从样本中随机选取两个大于样本平均值的数据做进一步调查,求取到的两个成绩来自不同题目的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业在“精准扶贫”行动中,决定帮助一贫困山区将水果运出销售.现有8辆甲型车和4辆乙型车,甲型车每次最多能运6吨且每天能运4次,乙型车每次最多能运10吨且每天能运3次,甲型车每天费用320元,乙型车每天费用504元.若需要一天内把180吨水果运输到火车站,则通过合理调配车辆,运送这批水果的费用最少为( )
A.2400元B.2560元C.2816元D.4576元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合是由数列组成的集合,其中数列同时满足以下三个条件:
①数列共有项,;②;③
(1)若等比数列,求等比数列的首项、公比和项数;
(2)若等差数列是递增数列,并且,常数,求该数列的通项公式;
(3)若数列,常数,,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】凤鸣山中学的高中女生体重 (单位:kg)与身高(单位:cm)具有线性相关关系,根据一组样本数据(),用最小二乘法近似得到回归直线方程为,则下列结论中不正确的是( )
A.与具有正线性相关关系
B.回归直线过样本的中心点
C.若该中学某高中女生身高增加1cm,则其体重约增加0.85kg
D.若该中学某高中女生身高为160cm,则可断定其体重必为50.29kg.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将数列的前项分成两部分,且两部分的项数分别是,若两部分和相等,则称数列的前项的和能够进行等和分割.
(1)若,试写出数列的前项和所有等和分割;
(2)求证:等差数列的前项的和能够进行等和分割;
(3)若数列的通项公式为:,且数列的前项的和能够进行等和分割,求所有满足条件的.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列六个命题:
(1)若,则函数的图像关于直线对称.
(2)与的图像关于直线对称.
(3)的反函数与是相同的函数.
(4)无最大值也无最小值.
(5)的最小正周期为.
(6)有对称轴两条,对称中心有三个.
则正确命题的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com