精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(I)讨论的单调性;

(II)若恒成立,证明:当时,.

(III)在(II)的条件下,证明:.

【答案】I.见解析;Ⅱ.见解析;III 见解析.

【解析】

I:对函数求导,分类讨论导函数的正负,进而得到单调性;Ⅱ:通过分类讨论可得到a=1,根据,得到:,进而得到结果; III:通过讨论函数的单调性得到,进而得到:,由Ⅱ知两式相乘得到结果.

I.

,f(x)在上递增;

若a>0,当时,f(x)单调递增;

时,单调递减。

Ⅱ.由I知,若a≤0,f(x)在(0,+)上递增,又f(l)=0,故f(x)≤0不恒成立

若a>1,当时,f(x)递减,f(x)>f(1)=0,不合题意。

若0<a<1,当时,f(x)递增,f(x)>f(l)=0.不合题意。

若a=1.f(x)在(0,1)上递增.在(1,+)上递减,f(x)≤f(1)=0,合题意。

故a=1,且(当且仅当x=1时取 “=”)

当0<x1<x2时,

所以

III.

时,单调递增;

时,,g(x)单调递减。

由(Ⅱ)知(当且仅当x=1时取 “=”)........... ②

两个不等式的等号不能同时取到,故得到:

②得

,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国2019年新年贺岁大片《流浪地球》自上映以来引发了社会的广泛关注,受到了观众的普遍好评.假设男性观众认为《流浪地球》好看的概率为,女性观众认为《流浪地球》好看的概率为.某机构就《流浪地球》是否好看的问题随机采访了4名观众(其中2男2女).

(1)求这4名观众中女性认为好看的人数比男性认为好看的人数多的概率;

(2)设表示这4名观众中认为《流浪地球》好看的人数,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面ABCD是边长为6的菱形,且平面ABCDF是棱PA上的一个动点,EPD的中点.

求证:

PC与平面BDF所成角的正弦值;

侧面PAD内是否存在过点E的一条直线,使得该直线上任一点MC的连线,都满足平面BDF,若存在,求出此直线被直线PAPD所截线段的长度,若不存在,请明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在矩形ABCD中,AB4AD2ECD的中点,将△ADE沿AE折起,得到如图2所示的四棱锥D1ABCE,其中平面D1AE⊥平面ABCE.

(1)证明:BE⊥平面D1AE

(2)FCD1的中点,在线段AB上是否存在一点M,使得MF∥平面D1AE,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合 为集合Un个非空子集,这n个集合满足:①从中任取m个集合都有 成立;②从中任取个集合都有 成立.

Ⅰ)若,写出满足题意的一组集合

Ⅱ)若,写出满足题意的一组集合以及集合

) ,求集合中的元素个数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是圆锥的底面的直径,是圆上异于的任意一点,为直径的圆与的另一个交点为的中点.现给出以下结论:

为直角三角形

②平面平面

③平面必与圆锥的某条母线平行

其中正确结论的个数是

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆Cx2+y2+2x2y+10和抛物线Ey22pxp0),圆C与抛物线E的准线交于MN两点,MNF的面积为p,其中FE的焦点.

1)求抛物线E的方程;

2)不过原点O的动直线l交该抛物线于AB两点,且满足OAOB,设点Q为圆C上任意一动点,求当动点Q到直线l的距离最大时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线C的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为

(1)求曲线C的参数方程和直线的直角坐标方程;

(2)若直线轴和y轴分别交于AB两点,P为曲线C上的动点,求PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面,点为棱的中点.

(Ⅰ)证明:平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步练习册答案