精英家教网 > 高中数学 > 题目详情

【题目】如图,已知分别为的外心,重心,.

1)求点的轨迹的方程;

2)是否存在过的直线交曲线两点且满足,若存在求出的方程,若不存在请说明理由.

【答案】1;(2)不存在.

【解析】

1)设点,利用重心的坐标公式得出点的坐标为,可得出点,由可得出点的轨迹的方程;

2)由题意得出直线的斜率存在,并设直线的方程为,设点,将直线的方程与曲线的方程联立,并列出韦达定理,由,可得出代入韦达定理求出的值,即可得出直线的方程,此时,直线过点,从而说明直线不存在.

1)设点,则点,由于,则点.

,可得出,化简得.

因此,轨迹的方程为

2)当轴重合时不符合条件.

假设存在直线,设点.

将直线的方程与曲线的方程联立

消去,由韦达定理得.

,得

另一方面,得,解得.

则直线过点,因此,直线不存在.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系,曲线的参数方程为(其中为参数)曲线的普通方程为,以坐标原点为极点,以轴正半轴为极轴建立极坐标系.

1)求曲线和曲线的极坐标方程;

2)射线:依次与曲线和曲线交于两点,射线:依次与曲线和曲线交于两点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在椭圆上,椭圆的右焦点,直线过椭圆的右顶点,与椭圆交于另一点,与轴交于点.

1)求椭圆的方程;

2)若为弦的中点,是否存在定点,使得恒成立?若存在,求出点的坐标,若不存在,请说明理由;

3)若,交椭圆于点,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)a1时,求不等式f(x)2的解集;

(2)若对任意xR,不等式f(x)≥a23a3恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且满足,设.

(Ⅰ)求证:数列是等比数列;

(Ⅱ)若,求实数的最小值;

(Ⅲ)当时,给出一个新数列,其中,设这个新数列的前项和为,若可以写成)的形式,则称为“指数型和”.问中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD是平行四边形,∠ADC60°ADAC2OAC的中点,PO⊥平面ABCDPO4MPD的中点.

1)证明:MO∥平面PAB

2)求直线AM与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图所示,在正三棱柱中,底面边长为,侧棱长为是棱的中点.

)求证:平面

)求二面角的大小;

)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.若方程有且只有两个不同的实根,则实数的取值范围为 ( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)①若直线的图象相切, 求实数的值;

②令函数,求函数在区间上的最大值.

(2)已知不等式对任意的恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案