精英家教网 > 高中数学 > 题目详情

【题目】如图,设为抛物线上不同的四点,且点关于轴对称,平行于该抛物线在点处的切线.

(1)求证:直线与直线的倾斜角互补;

(2)若,且的面积为16,求直线的方程.

【答案】(1)见解析;(2)

【解析】分析:(1),则由导数的几何意义可得,于是可设直线的方程为代入抛物线方程得到关于x的一元二次方程,然后根据斜率公式和根与系数的关系证得即证得直线与直线的倾斜角互补.(2)可得,由斜率公式可得然后由弦长公式得再根据的面积为16得从而可得直线的方程

详解:(1)

设直线的方程为

消去y整理得

因为直线与抛物线交于两点,

所以

因为

所以直线与直线的倾斜角互补

(2)因为

所以

所以

所以

解得

所以

解得

所以当时,直线的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2018年6月份上合峰会在青岛召开,面向高校招募志愿者,中国海洋大学海洋环境学院的8名同学符合招募条件并审核通过,其中大一、大二、大三、大四每个年级各2名.若将这8名同学分成甲乙两个小组,每组4名同学,其中大一的两名同学必须分到同一组,则分到乙组的4名同学中恰有2名同学是来自于同一年级的分组方式共有__________种.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1x+my+1=0l2:(m-3x-2y+13-7m=0

1)若l1l2,求实数m的值;

2)若l1l2,求l1l2之间的距离d

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面向量 =(1,x), =(2x+3,﹣x)(x∈R).
(1)若 ,求| |
(2)若 夹角为锐角,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是等差数列,;数列的前项和是,且=1.

(1)求数列的通项公式;

(2)求证:数列是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数处有极大值,则常数为( )

A. 2或6 B. 2 C. 6 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求圆心在直线2x-y-3=0上,且过点A(5,2)和点B(3,一2)的圆的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且PA=PD= AD,若E、F分别为PC、BD的中点. (Ⅰ) 求证:EF∥平面PAD;
(Ⅱ) 求证:EF⊥平面PDC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=|x﹣1|+|2x+3|.
(1)若f(x)≥m对一切x∈R都成立,求实数m的取值范围;
(2)解不等式f(x)≤4.

查看答案和解析>>

同步练习册答案