精英家教网 > 高中数学 > 题目详情
命题p:?x0∈R,x03-x02+1≤0,则?p是
?x∈R,x3-x2+1>0
?x∈R,x3-x2+1>0
分析:所给的命题是一个特称命题,其否定是一个全称命题,按规则写出其否定即可.
解答:解:∵命题p:?x0∈R,x03-x02+1≤0是一个特称命题
∴命题p:?x0∈R,x03-x02+1≤0,的否定是“?x∈R,x3-x2+1>0”
故答案为:?x∈R,x3-x2+1>0
点评:本题主要考查命题的否定,解题的关键是掌握住命题的否定的定义及书写规则,对于两特殊命题特称命题与全称命题的否定,注意变换量词,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有关命题的说法错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题中,正确的有(  )
①两个变量间的相关系数γ越小,说明两变量间的线性相关程度越低;
②命题P:“?x0∈R,x
 
2
0
-x0-1>0”的否定?P:“?x∈R,x2-x-1<0”;
③用相关指数R2来刻画回归效果,若R2越大,则说明模型的拟合效果越好;
④若a=0.32,b=20.3,c=log0.32,则c<a<b.
A、①③④B、①④C、③④D、②③

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:?x0∈R,x20+x0+1≤0,命题q:函数y=x 
1
2
是(0,+∞)上的单调递增函数,则下面命题为真命题的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x0∈R,使得ex0<0,则?p为(  )
A、对?x∈R,都有ex≥0B、对?x∈R,都有ex>0C、?x0∈R,使得ex≥0D、对?x∈R,都有ex<0

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题中
①设有一个回归方程y=2-3x,变量x增加一个单位时,y平均增加3个单位;
②命题P:“?x0∈R,x02-x0-1>0“的否定¬P:“?x∈R,x2-x-1≤0”;
③设随机变量X服从正态分布N(0,1),若P(X>1)=p,则P(-l<X<0)=
1
2
-p;
④在一个2×2列联表中,由计算得K2=6.679,则有99%的把握确认这两个变量间有关系.
其中正确的命题的个数有(  )
附:本题可以参考独立性检验临界值表
 P(K2≥k)  0.5 0.40  0.25  0.15  0.10  0.05  0.025  0.010  0.005  0.001 
 k 0.455  0.708  1.323  2.072  2.706  3.841  5.024  6.535  7.879  10.
828 
A、1个B、2个C、3个D、4个

查看答案和解析>>

同步练习册答案