【题目】随着移动互联网的快速发展,基于互联网的共享单车应运而生.某共享单车运营公司为进一步扩大市场,公司拟再采购一批单车.现有采购成本分别为元/辆和元/辆的、两款车型可供选择,按规定每辆单车最多使用年,但由于多种原因(如骑行频率等)会导致车辆报废年限各不相同.考虑到公司运营的经济效益,该公司决定先对两款车型的单车各辆进行科学模拟测试,得到两款单车使用寿命频数表见下表.
经测算,平均每辆单车每年可以带来收入元.不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整年.
(1)分别估计、两款车型使用寿命不低于年的概率;
(2)如果你是公司的负责人,以参加科学模拟测试的两款车型各辆单车产生利润的平均数为决策依据,你会选择采购哪款车型?
科目:高中数学 来源: 题型:
【题目】为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天100颗种子浸泡后的发芽数,得到如下资料:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
温差x/℃ | 10 | 11 | 13 | 12 | 8 |
发芽数y/颗 | 23 | 25 | 30 | 26 | 16 |
(Ⅰ)从这5天中任选2天,记发芽的种子数分别为m,n,求事件“m,n均不小于25”的概率.
(Ⅱ)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另3天的数据,求出y关于x的线性回归方程 = x+ .
(参考公式: = , = ﹣ )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=
(1)令N(x)=(1+x)2﹣1+ln(1+x),判断并证明N(x)在(﹣1,+∞)上的单调性,并求N(0);
(2)求f(x)在定义域上的最小值;
(3)是否存在实数m,n满足0≤m<n,使得f(x)在区间[m,n]上的值域也为[m,n]? (参考公式:[ln(1+x)′]= )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线过点,其参数方程为(为参数, ),以为极点, 轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)求已知曲线和曲线交于两点,且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:,直线:.
(1)若直线被圆C截得的弦长为 ,求实数的值;
(2)当t =1时,由直线上的动点P引圆C的两条切线,若切点分别为A,B,则直线AB是否恒过一个定点?若存在,求出该定点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记表示大于的整数的十位数,例如,.已知,,都是大于的互不相等的整数,现有如下个命题:
①若,则;②,且;
③若是质数,则也是质数;④若,,成等差数列,则,,可能成等比数列.
其中所有的真命题为( )
A. ② B. ③④ C. ①②④ D. ①②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com