精英家教网 > 高中数学 > 题目详情
20.已知α,β为锐角,cosα=$\frac{1}{7}$,sin(α+β)=$\frac{5}{14}$$\sqrt{3}$,求cosβ的值及β的大小.

分析 先判断0<α+β<π,求得 sinα,cos(α+β).再由cosβ=cos[(α+β)-α]求解即可,结合0<β<$\frac{π}{2}$,求得β 的值.

解答 解:∵α,β为锐角,∴0<α+β<π. …(1分)
∵cosα=$\frac{1}{7}$,sin(α+β)=$\frac{5}{14}$$\sqrt{3}$,
∴sinα=$\frac{4\sqrt{3}}{7}$,cos(α+β)=±$\frac{11}{14}$. …(4分)
当cos(α+β)=$\frac{11}{14}$时,sinβ=sin[(α+β)-α]=sin(α+β)cosα-cos(α+β)sinα=$\frac{4\sqrt{3}}{7}$×$\frac{1}{7}$-$\frac{11}{14}$×$\frac{4\sqrt{3}}{7}$<0,矛盾,
∴cos(α+β)=-$\frac{11}{14}$.…(6分)
∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα …(8分)
=-$\frac{11}{14}$×$\frac{1}{7}$+$\frac{5\sqrt{3}}{14}$×$\frac{4\sqrt{3}}{7}$=$\frac{1}{2}$,…(10分)
又0<β<$\frac{π}{2}$,∴β=$\frac{π}{3}$.…(12分)

点评 本题主要考查同角三角函数的基本关系、两角和差的正弦、余弦公式的应用,根据三角函数的值求角,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的内接矩形面积的最大值是(  )
A.16B.25C.40D.80

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数g(x)=$\left\{\begin{array}{l}{{e}^{x},x>1}\\{\sqrt{{1-x}^{2}},-1≤x≤1}\end{array}\right.$则${∫}_{-1}^{2}$g(x)dx=$\frac{π}{2}$+e2-e.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设f(x)是定义在R上的奇函数,且满足f(x)=f(x+3),若f(-1)=1,f(2015)=$\frac{3a-2}{a+1}$,则实数a=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若A(4,y1)、B、C(8,y2)是椭圆$\frac{{x}^{2}}{144}$+$\frac{{y}^{2}}{9}$=1上的三点,它们关于右焦点的三条焦半径的长成等差数列,则B点的坐标是(6,±$\frac{3\sqrt{3}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.正方体ABCD-A1B1C1D1中:
(1)求二面角C-AD1-D的余弦值;
(2)求BB1与平面ACD1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,在四棱锥S-ABCD中,底面是边长为2的正方形,SA⊥底面ABCD,且SA=2,E为SC的中点,则直线BE与平面ABCD所成角的正弦值为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设a为非零实数,偶函数f(x)=x2+a|x-m|+1,x∈R在区间(1,2)上只有一个零点,则实数a的取值范围为-$\frac{5}{2}$<a<-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设集合M={x|x∈Z且-10≤x≤-3},N={x|x∈Z且|x|≤5 },则M∪N中元素的个数为(  )
A.11B.10C.16D.15

查看答案和解析>>

同步练习册答案