精英家教网 > 高中数学 > 题目详情
17.如图,四棱锥S-ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,E为SC的中点,SD=AD.
(1)求证:SA∥平面BDE;
(2)求直线SB与平面SAD所成角的正切值.

分析 (1)连结AC,交BD于O,连结OE,推导出OE∥SA,由此能证明SA∥平面BDE.
(2)由已知得AB⊥AD,AB⊥SD,从而AB⊥平面SAD,∠ASB是直线SB与平面SAD所成角,由此能求出直线SB与平面SAD所成角的正切值.

解答 证明:(1)连结AC,交BD于O,连结OE,
∵四棱锥S-ABCD的底面是边长为1的正方形,
∴O是AC的中点,
∵E为SC的中点,∴OE∥SA,
∵OE?平面BDE,SA?平面BDE,
∴SA∥平面BDE.
解:(2)∵四棱锥S-ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,
∴AB⊥AD,AB⊥SD,
又SA∩SD=S,∴AB⊥平面SAD,
∴∠ASB是直线SB与平面SAD所成角,
∵SD=AD=1,∴SA=$\sqrt{1+1}=\sqrt{2}$,AB=1,AB⊥SA,
∴tan$∠ASB=\frac{AB}{SA}$=$\frac{\sqrt{2}}{2}$,
∴直线SB与平面SAD所成角的正切值为$\frac{\sqrt{2}}{2}$.

点评 本题考查线面平行的证明,考查线面角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=x2+(sinα-2cosα)x+1是偶函数,则sinαcosα的值为(  )
A.$\frac{2}{5}$B.$-\frac{2}{5}$C.$±\frac{2}{5}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设点O在△ABC内部且满足$\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}$,现将一粒豆子撒在△ABC中,则豆子落在△OAB内的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知矩阵A=$({\begin{array}{l}1&2\\ y&4\end{array}})$,B=$({\begin{array}{l}x&6\\ 7&8\end{array}})$,AB=$({\begin{array}{l}{19}&{22}\\{43}&{50}\end{array}})$,则x+y=8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.汽车以10米/秒的速度行驶,在某处需要减速停车,设汽车以加速度-2米/秒2刹车,若把刹车时间5等分,则从开始刹车到停车,汽车刹车距离的过剩近似值为30米.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列有关命题的说法正确的有①②④⑥⑦⑧
①已知命题p:-4<x-a<4,命题q:(x-1)(x-3)<0,且q是p的充分而不必要条件,则a的取值范围是[-1,5];
②已知命题p:若$\overrightarrow{a}$=(1,2)与$\overrightarrow{b}$=(-2,λ)共线,则λ=-4,命题q:?k∈R,直线y=kx与圆x2+y2-2y=0相交,则¬p∨q是真命题;
③命题“?x∈R,使得x2+x+1<0”的否定是“?x∈R,均有x2+x+1<0”;
④命题“若x=v,则cosx=cosv”的逆否命题为真命题;
⑤命题“若am2<bm2,则a<b”的逆命题是真命题;
⑥若x,y∈R,则“x=y“是xy≥($\frac{x+y}{2}$)2成立的充要条件;
⑦对命题p:?x∈R,使得x2+x+1<0,则¬p:?x∈R,则x2+x+1≥0;
⑧命题“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和为Sn,且满足an=3Sn-2(n∈N*).
(1)求数列{an}的通项公式;
(2)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若对任意的x>1,函数x+xln x≥k(3x-e)(其中e是白然对数的底数,e=2.71828…),则实数k的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=$\frac{-lnx}{x+1}$+$\frac{1}{x}$,证明f(x)>$\frac{lnx}{x-1}$.

查看答案和解析>>

同步练习册答案