精英家教网 > 高中数学 > 题目详情
(本小题满分12分)已知函数
(1)若时,在其定义域内单调递增,求的取值范围;
(2)设函数的图象与函数的图象交于两点,过线段的中点轴的垂线分别交于点,问是否存在点,使处的切线与处的切线平行?若存在,求的横坐标,若不存在,请说明理由。
(1);(2)点不存在。

试题分析:(1)得到上恒成立,因为,所以…… …… …… …… …  ……… …  ………..4分
(2)设,则有,令
,假设点存在,则… …… … … … ……. . 6分
又因为,得到
,即…… … ……. . 8分
,设,得到
内单调递增,,假设不成立,所以点不存在。………..12分
点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,同时考查了转化与划归的思想,分析问题解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

某学生在复习指数函数的图象时发现:在y轴左边, y=3x与y=2x的图象均以x轴负半轴为渐近线, 当x=0时, 两图象交于点(0, 1).这说明在y轴的左边y=3x与y=2x的图象从左到右开始时几乎一样, 后来y=2x的图象变化加快使得y=2x与y=3x的图象逐渐远离, 而当x经过某一值x0以后 y= 3x的图象变化加快使得y=2x与y=3x的图象又逐渐接近, 直到x=0时两图象交于点(0, 1).那么x0=(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处取得极小值.
(1)求的值;
(2)若处的切线方程为,求证:当时,曲线不可能在直线的下方.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若不等式的解集为,求的取值范围;
(2)解关于的不等式
(3)若不等式对一切恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数是定义在上的奇函数,若对于任意给定的不等实数,不等式恒成立,则不等式的解集为          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定义在的函数,对任意的,都有,且当时,.
(1)证明:当时,
(2)判断函数的单调性并加以证明;
(3)如果对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数在区间[-2,2]上的值域是____________

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数为偶函数(0<θ<π), 其图象与直线y=2的交点的横坐标为的最小值为π,则(     )
A.ω=2,θ=B.ω=,θ=
C.ω=,θ=D.ω=2,θ=

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(其中a,b为实常数)。
(Ⅰ)讨论函数的单调区间:
(Ⅱ)当时,函数有三个不同的零点,证明:
(Ⅲ)若在区间上是减函数,设关于x的方程的两个非零实数根为。试问是否存在实数m,使得对任意满足条件的a及t恒成立?若存在,求m的取值范围;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案