精英家教网 > 高中数学 > 题目详情
18.△ABC中,AB=2,BC=$\sqrt{10}$,AC=3,O是△ABC的外心,求满足下列关系式$\overrightarrow{AO}$=p•$\overrightarrow{AB}$+q•$\overrightarrow{AC}$的实数p,q的值.

分析 可分别取AB,AC的中点D,E,并连接OD,OE,从而有OD⊥AB,OE⊥AC,而由余弦定理可以得到cos∠BAC=$\frac{1}{4}$.对等式$\overrightarrow{AO}=p\overrightarrow{AB}+q\overrightarrow{AC}$的两边分别乘向量$\overrightarrow{AB},\overrightarrow{AC}$,进行数量积的运算便可得出关于p,q的方程组:$\left\{\begin{array}{l}{2=4p+\frac{3}{2}q}\\{\frac{9}{2}=\frac{3}{2}p+9q}\end{array}\right.$,解方程组便可得出p,q的值.

解答 解:如图,取AB中点D,AC中点E,连接OD,OE,则OD⊥AB,OE⊥AC;

在△ABC中,AB=2,BC=$\sqrt{10}$,AC=3;
∴由余弦定理得,$cos∠BAC=\frac{A{B}^{2}+A{C}^{2}-B{C}^{2}}{2AB•AC}$=$\frac{4+9-10}{12}=\frac{1}{4}$;
由$\overrightarrow{AO}=p\overrightarrow{AB}+q\overrightarrow{AC}$得:$\left\{\begin{array}{l}{\overrightarrow{AO}•\overrightarrow{AB}=p{\overrightarrow{AB}}^{2}+q\overrightarrow{AC}•\overrightarrow{AB}}\\{\overrightarrow{AO}•\overrightarrow{AC}=p\overrightarrow{AB}•\overrightarrow{AC}+q{\overrightarrow{AC}}^{2}}\end{array}\right.$;
$\overrightarrow{AO}•\overrightarrow{AB}=|\overrightarrow{AO}||\overrightarrow{AB}|cos∠BAO$=$|\overrightarrow{AB}||\overrightarrow{AD}|=2×1=2$,$\overrightarrow{AO}•\overrightarrow{AC}=|\overrightarrow{AC}||\overrightarrow{AE}|=3×\frac{3}{2}=\frac{9}{2}$;
∴$\left\{\begin{array}{l}{2=4p+\frac{3}{2}q}\\{\frac{9}{2}=\frac{3}{2}p+9q}\end{array}\right.$;
解得$p=\frac{1}{3},q=\frac{4}{9}$.

点评 考查三角形外心的定义,余弦定理,以及数量积的运算及其计算公式,余弦函数的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若某市8所中学参加中学生比赛的得分用茎叶图表示(如图)其中茎为十位数,叶为个位数,则这组数据的平均数和方差分别是(  )
A.91.5、5B.91、5C.92、5.5D.92、5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数$f(x)=\left\{{\begin{array}{l}{|{{log}_2}x|,}&{(0<x<4)}\\{-\frac{1}{2}x+6,}&{(x≥4)}\end{array}}\right.$,若方程f(x)-k=0有三个不同的解a,b,c,且a<b<c,则ab+c的取值范围是(11,13).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.对任意$x∈({0,\frac{π}{2}})$,不等式sinx•f(x)<cosx•f′(x)恒成立,则下列不等式错误的是(  )
A.$f({\frac{π}{3}})>\sqrt{2}f({\frac{π}{4}})$B.$f({\frac{π}{3}})>2cos1•f(1)$C.$f({\frac{π}{4}})<\sqrt{2}cos1•f(1)$D.$f({\frac{π}{4}})<\frac{{\sqrt{6}}}{2}f({\frac{π}{6}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设全集U={x|x<4,x∈N},A={0,1,2},B={2,3},则B∪∁UA等于(  )
A.{3}B.{2,3}C.D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.利用三角函数线求满足tanα≥$\frac{\sqrt{3}}{3}$的角α的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若α为三四象限角则化简$\sqrt{\frac{1-cosα}{1+cosα}}$-$\sqrt{\frac{1+cosα}{1-cosα}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算:log535+2log0.5$\sqrt{2}$-log5$\frac{1}{50}$-log514.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若函数f(x)=1og${\;}_{\frac{1}{2}}$(x2-ax+1).
(1)若函数的定义域为R,求a的取值范围.
(2)若函数的值域为R,求a的取值范围.

查看答案和解析>>

同步练习册答案