精英家教网 > 高中数学 > 题目详情
(2012•福建)设f(x)=
1,x>0
0,x=0
-1,x<0
,g(x)=
1,x为有理数
0,x为无理数
,则f(g(π))的值为(  )
分析:根据π是无理数可求出g(π)的值,然后根据分段函数f(x)的解析式可求出f(g(π))的值.
解答:解:∵π是无理数
∴g(π)=0
则f(g(π))=f(0)=0
故选B.
点评:本题主要考查了分段函数的求值,解题的关键判定π是否为有理数,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•福建)设函数D(x)=
1, x为有理数
0, x为无理数
,则下列结论错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•福建)如图,等边三角形OAB的边长为8
3
,且其三个顶点均在抛物线E:x2=2py(p>0)上.
(1)求抛物线E的方程;
(2)设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q.证明以PQ为直径的圆恒过y轴上某定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•福建)函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有f(
x1+x2
2
) ≤
1
2
[f(x1) +f(x2) ]
则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,现给出如下命题:
①f(x)在[1,3]上的图象是连续不断的;
②f(x2)在[1,
3
]上具有性质P;
③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];
④对任意x1,x2,x3,x4∈[1,3],有f(
x1+x2+x3+x4
4
) ≤
1
4
[f(x1)+f(x2)+f(x3)+f(x4)]
其中真命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•福建模拟)设a>0,若关于x的不等式x+
a
x-1
≥5在x∈(1,+∞)恒成立,则a的最小值为(  )

查看答案和解析>>

同步练习册答案