精英家教网 > 高中数学 > 题目详情
已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项an+1,an+2…的最小值记为Bn,dn=An-Bn
(Ⅰ)若{an}为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n∈N*,an+4=an),写出d1,d2,d3,d4的值;
(Ⅱ)设d是非负整数,证明:dn=-d(n=1,2,3…)的充分必要条件为{an}是公差为d的等差数列;
(Ⅲ)证明:若a1=2,dn=1(n=1,2,3,…),则{an}的项只能是1或者2,且有无穷多项为1.
(Ⅰ)若{an}为2,1,4,3,2,1,4,3…,是一个周期为4的数列,∴d1=A1-B1=2-1=1,
d2=A2-B2=2-1=1,d3=A3-B3=4-1=3,d4=A4-B4=4-1=3.
(Ⅱ)充分性:设d是非负整数,若{an}是公差为d的等差数列,则an=a1+(n-1)d,
∴An=an=a1+(n-1)d,Bn=an+1=a1+nd,∴dn=An-Bn=-d,(n=1,2,3,4…).
必要性:若 dn=An-Bn=-d,(n=1,2,3,4…).假设ak是第一个使ak-ak-1<0的项,
则dk=Ak-Bk=ak-1-Bk≥ak-1-ak>0,这与dn=-d≤0相矛盾,故{an}是一个不减的数列.
∴dn=An-Bn=an-an+1=-d,即 an+1-an=d,故{an}是公差为d的等差数列.
(Ⅲ)证明:若a1=2,dn=1(n=1,2,3,…),则{an}的项不能等于零,否则d1=2-0=2,矛盾.
而且还能得到{an}的项不能超过2,用反证法证明如下:
假设{an}的项中,有超过2的,设am是第一个大于2的项,则dm=Am-Bm=am-1>1,
这与已知dn=1相矛盾,故假设不对,
即{an}的项不能超过2,故{an}的项只能是1或者2.
下面用反证法证明{an}的项中,有无穷多项为1.
若ak是最后一个1,则ak是后边的各项的最小值都等于2,故dk=Ak-Bk=2-2=0,矛盾,
故{an}的项中,有无穷多项为1.
综上可得,{an}的项只能是1或者2,且有无穷多项为1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知{an}是由非负整数组成的数列,满足a1=0,a2=3,an+1an=(an-1+2)(an-2+2),n=3,4,5,…,
(1)求a3
(2)证明an=an-2+2,n=3,4,5,…;
(3)求{an}的通项公式及其前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是由非负整数组成的数列,满足a1=0,a2=3,an=an-2+2,(n∈N*,n≥3),则数列{an}的通项公式为
an=n+(-1)n
an=n+(-1)n

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•北京)已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项an+1,an+2…的最小值记为Bn,dn=An-Bn
(Ⅰ)若{an}为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n∈N*,an+4=an),写出d1,d2,d3,d4的值;
(Ⅱ)设d是非负整数,证明:dn=-d(n=1,2,3…)的充分必要条件为{an}是公差为d的等差数列;
(Ⅲ)证明:若a1=2,dn=1(n=1,2,3,…),则{an}的项只能是1或者2,且有无穷多项为1.

查看答案和解析>>

科目:高中数学 来源:2013年全国普通高等学校招生统一考试理科数学(北京卷解析版) 题型:解答题

已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项…的最小值记为Bn,dn=An-Bn.

(I)若{an}为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n∈N*),写出d1,d2,d3,d4的值;

(II)设d为非负整数,证明:dn=-d(n=1,2,3…)的充分必要条件为{an}为公差为d的等差数列;

(III)证明:若a1=2,dn=1(n=1,2,3…),则{an}的项只能是1或2,且有无穷多项为1.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是由非负整数组成的数列,满足a1=0,a2=3,an+1·an=(an-1+2)(an-2+2),n=3,4,5,

…,用反证法证明a3=2.

查看答案和解析>>

同步练习册答案