¶ÔÓÚº¯Êýy=f£¨x£©£¬x¡Ê£¨0£¬+¡Þ£©£¬Èç¹ûa£¬b£¬cÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬ÄÇôf£¨a£©£¬f£¨b£©£¬f£¨c£©Ò²ÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬Ôò³Æº¯Êýf£¨x£©Îª¡°±£Èý½ÇÐκ¯Êý¡±£®
¶ÔÓÚº¯Êýy=g£¨x£©£¬x¡Ê[0£¬+¡Þ£©£¬Èç¹ûa£¬b£¬cÊÇÈÎÒâµÄ·Ç¸ºÊµÊý£¬¶¼ÓÐg£¨a£©£¬g£¨b£©£¬g£¨c£©ÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬Ôò³Æº¯Êýg£¨x£©Îª¡°ºãÈý½ÇÐκ¯Êý¡±£®
£¨¢ñ£©ÅжÏÈý¸öº¯Êý¡°f1£¨x£©=x£¬f2£¨x£©=
2x
£¬f3£¨x£©=3x2£¨¶¨ÒåÓò¾ùΪx¡Ê£¨0£¬+¡Þ£©£©¡±ÖУ¬ÄÄЩÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£¿Çë˵Ã÷ÀíÓÉ£»
£¨¢ò£©Èôº¯Êýg(x)=
x2+kx+1
x2-x+1
£¬x¡Ê[{0£¬+¡Þ}£©ÊÇ¡°ºãÈý½ÇÐκ¯Êý¡±£¬ÊÔÇóʵÊýkµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©Èç¹ûº¯Êýh£¨x£©ÊǶ¨ÒåÔÚ£¨0£¬+¡Þ£©ÉϵÄÖÜÆÚº¯Êý£¬ÇÒÖµÓòҲΪ£¨0£¬+¡Þ£©£¬ÊÔÖ¤Ã÷£ºh£¨x£©¼È²»ÊÇ¡°ºãÈý½ÇÐκ¯Êý¡±£¬Ò²²»ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£®
·ÖÎö£º£¨¢ñ£©²»·ÁÉèa¡Üb¡Üc£¬ÓÉa+b£¾c£¬ÄÜÍƳöf1£¨a£©+f1£¨b£©£¾c=f1£¨c£©£¬¿ÉµÃf1£¨x£©ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£®
ͬÀí¿ÉµÃf2£¨x£©ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£®Í¨¹ý¾Ù·´ÁÐa=3£¬b=3£¬c=5£¬f3£¨a£©+f3£¨b£©=f3£¨c£©£¬
¹Êf3£¨x£©²»ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£®
£¨¢ò£©µ±x=0ʱ£¬g£¨x£©=1£»µ±x£¾0ʱ£¬g(x)=1+
k+1
x+
1
x
-1
£¬µ±k£¾-1ʱ£¬g£¨x£©¡Ê£¨1£¬k+2]£¬
ÓÉ¡°ºãÈý½ÇÐκ¯Êý¡±µÄ¶¨Ò壬1+1£¾k+2£¬k£¼0£¬¹Ê ÓÐ-1£¼k£¼0£®
µ±k£¼-1ʱ£¬g£¨x£©¡Ê[k+2£¬1]£¬½â
k+2£¾0
(k+2)+(k+2)£¾1
£¬µÃk£¾-
3
2
£¬ËùÒÔ£¬-
3
2
£¼k£¼-1
£®
½«ÒÔÉÏÁ½¸ö·¶Î§È¡²¢¼¯£®
£¨¢ó£©ÒòΪ´æÔÚÕýʵÊýa£¬b£¬c£¬Ê¹µÃh£¨a£©=1£¬h£¨b£©=1£¬h£¨c£©=2£¬¹Êh£¨x£©²»ÊÇ¡°ºãÈý½ÇÐκ¯Êý¡±£®
ÓÉÖÜÆÚº¯ÊýµÄ¶¨Ò壬´æÔÚn£¾m£¾0£¬Ê¹µÃh£¨m£©=1£¬h£¨n£©=2£¬a£¬b£¬cÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬µ«ÒòΪ
h£¨a£©=h£¨b£©=h£¨m£©=1£¬h£¨c£©=h£¨n£©=2£¬¹Êh£¨a£©£¬h£¨b£©£¬h£¨c£©²»ÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬
h£¨x£©Ò²²»ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£®
½â´ð£º½â£º£¨¢ñ£©¶ÔÓÚf1£¨x£©=x£¬ËüÔÚ£¨0£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬
²»·ÁÉèa¡Üb¡Üc£¬Ôòf1£¨a£©¡Üf1£¨b£©¡Üf1£¨c£©£¬ÒòΪa+b£¾c£¬
ËùÒÔf1£¨a£©+f1£¨b£©=a+b£¾c=f1£¨c£©£¬¹Êf1£¨x£©ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£¨2·Ö£©
¶ÔÓÚf2(x)=
2x
£¬ËüÔÚ£¨0£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬
²»·ÁÉèa¡Üb¡Üc£¬Ôòf2£¨a£©¡Üf2£¨b£©¡Üf2£¨c£©£¬ÒòΪa+b£¾c£¬
ËùÒÔf2(a)+f2(b)=
2a
+
2b
=
(
2a
+
2b
)
2
£¾
2(a+b)
£¾
2c
=f2£¨c£©£¬
¹Êf2£¨x£©ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£¨4·Ö£©
¶ÔÓÚf3£¨x£©=3x2£¬È¡a=3£¬b=3£¬c=5£¬ÏÔÈ»a£¬b£¬cÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬
µ«ÒòΪf3£¨a£©+f3£¨b£©=3¡Á£¨32+32£©£¼3¡Á52=f3£¨c£©£¬
ËùÒÔ£¬f3£¨a£©¡¢f3£¨b£©¡¢f3£¨c£©²»ÊÇÈý½ÇÐεÄÈý±ß³¤£¬¹Êf3£¨x£©²»ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£¨6·Ö£©
£¨¢ò£©¡ßg(x)=1+
(k+1)x
x2-x+1
£¬
¡àµ±x=0ʱ£¬g£¨x£©=1£»  µ±x£¾0ʱ£¬g(x)=1+
k+1
x+
1
x
-1
£®
µ±k£¾-1ʱ£¬ÒòΪg(x)=1+
k+1
x+
1
x
-1
¡Ü1+
k+1
2
x•
1
x
-1
=k+2
£¬
ËùÒÔ£¬g£¨x£©¡Ê£¨1£¬k+2]£¬
´Ó¶øµ±k£¾-1ʱ£¬g£¨x£©¡Ê[1£¬k+2]£¬ÓÉ1+1£¾k+2£¬µÃk£¼0£¬ËùÒÔ£¬-1£¼k£¼0£¨9·Ö£©
µ±k£¼-1ʱ£¬ÒòΪg(x)=1+
k+1
x+
1
x
-1
¡Ý1+
k+1
2
x•
1
x
-1
=k+2
£¬
ËùÒÔ£¬g£¨x£©¡Ê[k+2£¬1£©£¬
´Ó¶øµ±k£¼-1ʱ£¬g£¨x£©¡Ê[k+2£¬1]£¬ÓÉ
k+2£¾0
(k+2)+(k+2)£¾1
£¬
µÃ k£¾-
3
2
£¬ËùÒÔ£¬-
3
2
£¼k£¼-1
£¬
×ÛÉÏËùÊö£¬ËùÇókµÄÈ¡Öµ·¶Î§ÊÇ£º-
3
2
£¼k£¼0
£®£¨11·Ö£©

£¨¢ó£©¢ÙÒòΪh£¨x£©µÄÖµÓòΪ£¨0£¬+¡Þ£©£¬¡à´æÔÚÕýʵÊýa£¬b£¬c£¬
ʹµÃh£¨a£©=1£¬h£¨b£©=1£¬h£¨c£©=2£¬
ÏÔÈ»ÕâÑùµÄh£¨a£©£¬h£¨b£©£¬h£¨c£©²»ÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬
¹Êh£¨x£©²»ÊÇ¡°ºãÈý½ÇÐκ¯Êý¡±£¨13·Ö£©
¢ÚÒòΪh£¨x£©ÊÇÖµÓòΪ£¨0£¬+¡Þ£©µÄÖÜÆÚº¯Êý£¬ËùÒÔ´æÔÚn£¾m£¾0£¬
ʹµÃh£¨m£©=1£¬h£¨n£©=2£¬
Éèh£¨x£©µÄ×îСÕýÖÜÆÚΪT£¨T£¾0£©£¬
Áîa=b=m+kT£¬c=n£¬ÆäÖÐk¡ÊN*£¬ÇÒk£¾
n-2m
2T
£¬
Ôòa+b£¾c£¬ÓÖÏÔÈ»b+c£¾a£¬c+a£¾b£¬ËùÒÔa£¬b£¬cÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬
µ«ÒòΪh£¨a£©=h£¨b£©=h£¨m£©=1£¬h£¨c£©=h£¨n£©=2£¬
ËùÒÔh£¨a£©£¬h£¨b£©£¬h£¨c£©²»ÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬
¹Êh£¨x£©Ò²²»ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£¨16·Ö£©
µãÆÀ£º±¾Ì⿼²é¡°±£Èý½ÇÐκ¯Êý¡±¡¢¡°ºãÈý½ÇÐκ¯Êý¡±µÄ¶¨Ò壬º¯ÊýµÄµ¥µ÷ÐÔÓëÖÜÆÚÐÔ£¬ÌåÏÖÁË·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªy=f£¨x£©ÊǶ¨ÒåÔÚRÉϵÄÆ溯Êý£¬ÇÒy=f(x+
¦Ð
2
)
Ϊżº¯Êý£¬¶ÔÓÚº¯Êýy=f£¨x£©ÓÐÏÂÁм¸ÖÖÃèÊö£º
¢Ùy=f£¨x£©ÊÇÖÜÆÚº¯Êý¢Úx=¦ÐÊÇËüµÄÒ»Ìõ¶Ô³ÆÖ᣻¢Û£¨-¦Ð£¬0£©ÊÇËüͼÏóµÄÒ»¸ö¶Ô³ÆÖÐÐÄ£»
¢Üµ±x=
¦Ð
2
ʱ£¬ËüÒ»¶¨È¡×î´óÖµ£»ÆäÖÐÃèÊöÕýÈ·µÄÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐÎå¸öÃüÌ⣺
¢Ùº¯Êýy=f£¨x£©£¬x¡ÊRµÄͼÏóÓëÖ±Ïßx=a¿ÉÄÜÓÐÁ½¸ö²»Í¬µÄ½»µã£»
¢Úº¯Êýy=log2x2Ó뺯Êýy=2log2xÊÇÏàµÈº¯Êý£»
¢Û¶ÔÓÚÖ¸Êýº¯Êýy=2xÓëÃݺ¯Êýy=x2£¬×Ü´æÔÚx0£¬µ±x£¾x0 Ê±£¬ÓÐ2x£¾x2³ÉÁ¢£»
¢Ü¶ÔÓÚº¯Êýy=f£¨x£©£¬x¡Ê[a£¬b]£¬ÈôÓÐf£¨a£©•f£¨b£©£¼0£¬Ôòf£¨x£©ÔÚ£¨a£¬b£©ÄÚÓÐÁãµã£®
¢ÝÒÑÖªx1ÊÇ·½³Ìx+lgx=5µÄ¸ù£¬x2ÊÇ·½³Ìx+10x=5µÄ¸ù£¬Ôòx1+x2=5£®
ÆäÖÐÕýÈ·µÄÐòºÅÊÇ
¢Û¢Ý
¢Û¢Ý
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2010•ºÍƽÇøһģ£©º¯Êýy=f£¨x£©ÊǶ¨ÒåÔÚ[a£¬b]ÉϵÄÔöº¯Êý£¬ÆäÖÐa£¬b¡ÊR£¬ÇÒ0£¼b£¼-a£¬ÒÑÖªy=f£¨x£©ÎÞÁãµã£¬ÉèF£¨x£©=f2£¨x£©+f2£¨-x£©£¬Ôò¶ÔÓÚº¯Êýy=F£¨x£©ÓÐÈçÏÂËÄÖÖ˵·¨£º¢Ù¶¨ÒåÓòÊÇ[-b£¬b]£»¢Ú×îСֵÊÇ0£»¢ÛÊÇżº¯Êý£»¢ÜÔÚ¶¨ÒåÓòÄÚµ¥µ÷µÝÔö£®ÆäÖÐÕýÈ·µÄ˵·¨ÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2010•ÉϺ£Ä£Ä⣩¶ÔÓÚº¯Êýy=f£¨x£©µÄͼÏóÉÏÈÎÒâÁ½µãA£¨a£¬f£¨a£©£©£¬B£¨b£¬f£¨b£©£©£¬ÉèµãC·Ö
AB
µÄ±ÈΪ¦Ë£¨¦Ë£¾0£©£®Èôº¯ÊýΪf£¨x£©=x2£¨x£¾0£©£¬ÔòÖ±ÏßAB±ØÔÚÇúÏßABµÄÉÏ·½£¬ÇÒÓÉͼÏóÌØÕ÷¿ÉµÃ²»µÈʽ
a2+¦Ëb2
1+¦Ë
£¾(
a+¦Ëb
1+¦Ë
)
2
£®Èôº¯ÊýΪf£¨x£©=log2010x£¬Çë·ÖÎö¸Ãº¯ÊýµÄͼÏóÌØÕ÷£¬ÉÏÊö²»µÈʽ¿ÉÒԵõ½²»µÈʽ
log2010a+log2010b
1+¦Ë
£¼log2010
a+¦Ëb
1+¦Ë
log2010a+log2010b
1+¦Ë
£¼log2010
a+¦Ëb
1+¦Ë
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶¨ÒåÔÚÇø¼ä[-3£¬3]Éϵĺ¯Êýy=f£¨x£©Âú×ãf£¨-x£©+f£¨x£©=0£¬¶ÔÓÚº¯Êýy=f£¨x£©µÄͼÏóÉÏÈÎÒâÁ½µã£¨x1£¬f£¨x1£©£©£¬£¨x2£¬f£¨x2£©£©¶¼ÓУ¨x1-x2£©•[f£¨x1£©-f£¨x2£©]£¼0£®ÈôʵÊýa£¬bÂú×ãf£¨a2-2a£©+f£¨2b-b2£©¡Ü0£¬Ôòµã£¨a£¬b£©ËùÔÚÇøÓòµÄÃæ»ýΪ£¨¡¡¡¡£©
A¡¢8B¡¢4C¡¢2D¡¢1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸