·ÖÎö£º£¨¢ñ£©²»·ÁÉèa¡Üb¡Üc£¬ÓÉa+b£¾c£¬ÄÜÍƳöf
1£¨a£©+f
1£¨b£©£¾c=f
1£¨c£©£¬¿ÉµÃf
1£¨x£©ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£®
ͬÀí¿ÉµÃf
2£¨x£©ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£®Í¨¹ý¾Ù·´ÁÐa=3£¬b=3£¬c=5£¬f
3£¨a£©+f
3£¨b£©=f
3£¨c£©£¬
¹Êf
3£¨x£©²»ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£®
£¨¢ò£©µ±x=0ʱ£¬g£¨x£©=1£»µ±x£¾0ʱ£¬
g(x)=1+£¬µ±k£¾-1ʱ£¬g£¨x£©¡Ê£¨1£¬k+2]£¬
ÓÉ¡°ºãÈý½ÇÐκ¯Êý¡±µÄ¶¨Ò壬1+1£¾k+2£¬k£¼0£¬¹Ê ÓÐ-1£¼k£¼0£®
µ±k£¼-1ʱ£¬g£¨x£©¡Ê[k+2£¬1]£¬½â
£¬µÃ
k£¾-£¬ËùÒÔ£¬
-£¼k£¼-1£®
½«ÒÔÉÏÁ½¸ö·¶Î§È¡²¢¼¯£®
£¨¢ó£©ÒòΪ´æÔÚÕýʵÊýa£¬b£¬c£¬Ê¹µÃh£¨a£©=1£¬h£¨b£©=1£¬h£¨c£©=2£¬¹Êh£¨x£©²»ÊÇ¡°ºãÈý½ÇÐκ¯Êý¡±£®
ÓÉÖÜÆÚº¯ÊýµÄ¶¨Ò壬´æÔÚn£¾m£¾0£¬Ê¹µÃh£¨m£©=1£¬h£¨n£©=2£¬a£¬b£¬cÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬µ«ÒòΪ
h£¨a£©=h£¨b£©=h£¨m£©=1£¬h£¨c£©=h£¨n£©=2£¬¹Êh£¨a£©£¬h£¨b£©£¬h£¨c£©²»ÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬
h£¨x£©Ò²²»ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£®
½â´ð£º½â£º£¨¢ñ£©¶ÔÓÚf
1£¨x£©=x£¬ËüÔÚ£¨0£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬
²»·ÁÉèa¡Üb¡Üc£¬Ôòf
1£¨a£©¡Üf
1£¨b£©¡Üf
1£¨c£©£¬ÒòΪa+b£¾c£¬
ËùÒÔf
1£¨a£©+f
1£¨b£©=a+b£¾c=f
1£¨c£©£¬¹Êf
1£¨x£©ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£¨2·Ö£©
¶ÔÓÚ
f2(x)=£¬ËüÔÚ£¨0£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬
²»·ÁÉèa¡Üb¡Üc£¬Ôòf
2£¨a£©¡Üf
2£¨b£©¡Üf
2£¨c£©£¬ÒòΪa+b£¾c£¬
ËùÒÔ
f2(a)+f2(b)=+=£¾£¾=f
2£¨c£©£¬
¹Êf
2£¨x£©ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£¨4·Ö£©
¶ÔÓÚf
3£¨x£©=3x
2£¬È¡a=3£¬b=3£¬c=5£¬ÏÔÈ»a£¬b£¬cÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬
µ«ÒòΪf
3£¨a£©+f
3£¨b£©=3¡Á£¨3
2+3
2£©£¼3¡Á5
2=f
3£¨c£©£¬
ËùÒÔ£¬f
3£¨a£©¡¢f
3£¨b£©¡¢f
3£¨c£©²»ÊÇÈý½ÇÐεÄÈý±ß³¤£¬¹Êf
3£¨x£©²»ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£¨6·Ö£©
£¨¢ò£©¡ß
g(x)=1+£¬
¡àµ±x=0ʱ£¬g£¨x£©=1£» µ±x£¾0ʱ£¬
g(x)=1+£®
µ±k£¾-1ʱ£¬ÒòΪ
g(x)=1+¡Ü1+=k+2£¬
ËùÒÔ£¬g£¨x£©¡Ê£¨1£¬k+2]£¬
´Ó¶øµ±k£¾-1ʱ£¬g£¨x£©¡Ê[1£¬k+2]£¬ÓÉ1+1£¾k+2£¬µÃk£¼0£¬ËùÒÔ£¬-1£¼k£¼0£¨9·Ö£©
µ±k£¼-1ʱ£¬ÒòΪ
g(x)=1+¡Ý1+=k+2£¬
ËùÒÔ£¬g£¨x£©¡Ê[k+2£¬1£©£¬
´Ó¶øµ±k£¼-1ʱ£¬g£¨x£©¡Ê[k+2£¬1]£¬ÓÉ
£¬
µÃ
k£¾-£¬ËùÒÔ£¬
-£¼k£¼-1£¬
×ÛÉÏËùÊö£¬ËùÇókµÄÈ¡Öµ·¶Î§ÊÇ£º
-£¼k£¼0£®£¨11·Ö£©
£¨¢ó£©¢ÙÒòΪh£¨x£©µÄÖµÓòΪ£¨0£¬+¡Þ£©£¬¡à´æÔÚÕýʵÊýa£¬b£¬c£¬
ʹµÃh£¨a£©=1£¬h£¨b£©=1£¬h£¨c£©=2£¬
ÏÔÈ»ÕâÑùµÄh£¨a£©£¬h£¨b£©£¬h£¨c£©²»ÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬
¹Êh£¨x£©²»ÊÇ¡°ºãÈý½ÇÐκ¯Êý¡±£¨13·Ö£©
¢ÚÒòΪh£¨x£©ÊÇÖµÓòΪ£¨0£¬+¡Þ£©µÄÖÜÆÚº¯Êý£¬ËùÒÔ´æÔÚn£¾m£¾0£¬
ʹµÃh£¨m£©=1£¬h£¨n£©=2£¬
Éèh£¨x£©µÄ×îСÕýÖÜÆÚΪT£¨T£¾0£©£¬
Áîa=b=m+kT£¬c=n£¬ÆäÖÐk¡ÊN
*£¬ÇÒ
k£¾£¬
Ôòa+b£¾c£¬ÓÖÏÔÈ»b+c£¾a£¬c+a£¾b£¬ËùÒÔa£¬b£¬cÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬
µ«ÒòΪh£¨a£©=h£¨b£©=h£¨m£©=1£¬h£¨c£©=h£¨n£©=2£¬
ËùÒÔh£¨a£©£¬h£¨b£©£¬h£¨c£©²»ÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬
¹Êh£¨x£©Ò²²»ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£¨16·Ö£©