精英家教网 > 高中数学 > 题目详情

在△ABC中,角A,B,C的对边分别为a,b,c.已知向量数学公式=数学公式数学公式=数学公式数学公式=-1,
(Ⅰ) 求cosA的值;
(Ⅱ) 若数学公式,b=2,求c的值.

解:(Ⅰ)∵===-1,
∴2cos2-2sin2=-1.(2分)
∴cosA=-.(4分)
(Ⅱ)由(Ⅰ)知cosA=-,且0<A<π,∴.(6分)
∵a=,b=2,
由正弦定理得,即
∴sinB=.(8分)
∵0<B<π,B<A,∴.(10分)
.∴c=b=2.(12分)
分析:(I)利用向量的数量积公式化简,利用二倍角的余弦公式求出要求的式子的值;
(II)先根据(I)求出角A,然后利用三角形中的正弦定理求出角B,最后利用三角形的内角和为180°求出角C,从而求出c的值.
点评:本题考查向量的数量积公式、考查三角形的正弦定理、考查三角形的内角和为180°、考查利用三角函数的单调性求三角函数值的范围,属于中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案